Fusing structural and temporal information in citation networks for identifying milestone works

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yuhao Zhou, Faming Gong, Yanwei Wang, Ruijie Wang, An Zeng
{"title":"Fusing structural and temporal information in citation networks for identifying milestone works","authors":"Yuhao Zhou, Faming Gong, Yanwei Wang, Ruijie Wang, An Zeng","doi":"10.1016/j.chaos.2025.116004","DOIUrl":null,"url":null,"abstract":"The rapid proliferation of scientific and technological works has highlighted the necessity to effectively identify the significant achievements in more and more complex citation networks. Mainstream algorithms fall into two categories: structural information based algorithms with Citation and PageRank as the core; Temporal information based algorithms represented by the citation dynamic model and Relevance. This article conducts a detailed study of the relationship between these two categories to fill the gap in this area. We use the American Physical Society (APS) dataset, which includes 469,452 papers and 5,016,382 citations from 1893 to 2010. Our findings indicate that PageRank and Citation are statistically similar, both favoring older articles. However, Relevance excels in early forecasting, hence showing a weaker correlation with PageRank. Inspired by this, we introduce a new method called Structural-Temporal Rank (STRank). Validation experiments demonstrate that STRank excels in identifying milestone letters and predicting future impact, outperforming other methods in these tasks. This study introduces the idea of fusing structural and temporal information in designing ranking methods that could guide the future development of more efficient node identification algorithms in networks.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"33 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2025.116004","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid proliferation of scientific and technological works has highlighted the necessity to effectively identify the significant achievements in more and more complex citation networks. Mainstream algorithms fall into two categories: structural information based algorithms with Citation and PageRank as the core; Temporal information based algorithms represented by the citation dynamic model and Relevance. This article conducts a detailed study of the relationship between these two categories to fill the gap in this area. We use the American Physical Society (APS) dataset, which includes 469,452 papers and 5,016,382 citations from 1893 to 2010. Our findings indicate that PageRank and Citation are statistically similar, both favoring older articles. However, Relevance excels in early forecasting, hence showing a weaker correlation with PageRank. Inspired by this, we introduce a new method called Structural-Temporal Rank (STRank). Validation experiments demonstrate that STRank excels in identifying milestone letters and predicting future impact, outperforming other methods in these tasks. This study introduces the idea of fusing structural and temporal information in designing ranking methods that could guide the future development of more efficient node identification algorithms in networks.
融合引文网络中的结构和时间信息以识别里程碑作品
科技成果的快速增长凸显了在越来越复杂的引文网络中有效识别重要成果的必要性。主流算法有两大类:以Citation和PageRank为核心的基于结构信息的算法;以引文动态模型和相关性为代表的基于时间信息的算法。本文对这两类之间的关系进行了详细的研究,以填补这方面的空白。我们使用美国物理学会(APS)的数据集,其中包括从1893年到2010年的469,452篇论文和5,016,382次引用。我们的研究结果表明,PageRank和Citation在统计上是相似的,都倾向于较老的文章。然而,相关性在早期预测方面表现出色,因此与PageRank的相关性较弱。受此启发,我们引入了一种新的方法,称为结构-时间秩(STRank)。验证实验表明,STRank在识别里程碑字母和预测未来影响方面表现出色,在这些任务中优于其他方法。本研究在设计排序方法时引入了融合结构信息和时间信息的思想,可以指导未来网络中更有效的节点识别算法的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信