Rheostatic effect of a magnetic field on the onset of chaotic and periodic motions in a five-dimensional magnetoconvective Lorenz system

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Pradeep G. Siddheshwar , Anoop Suresh , M.S. Jagadeesh Kumar
{"title":"Rheostatic effect of a magnetic field on the onset of chaotic and periodic motions in a five-dimensional magnetoconvective Lorenz system","authors":"Pradeep G. Siddheshwar ,&nbsp;Anoop Suresh ,&nbsp;M.S. Jagadeesh Kumar","doi":"10.1016/j.chaos.2025.116020","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with a weakly nonlinear study of two-dimensional Rayleigh–Bénard magnetoconvection using a simplified five-dimensional Lorenz model. The governing equations of the system are nondimensionalized and formulated in terms of the stream function and the scalar magnetic potential. A five-modal Fourier truncation scheme is employed and the resulting equations are scaled to obtain a five-dimensional autonomous dynamical system. The Hopf-Rayleigh number, signifying Hopf bifurcation, is numerically evaluated from the analysis of weakly nonlinear stability. Chaotic and periodic motions are depicted by plotting bifurcation diagrams, largest Lyapunov exponent (LLE) diagrams and three-dimensional projections of the phase-space. For a fixed set of parameter values, increasing the strength of the applied magnetic field is found to increase the Hopf-Rayleigh number, thereby delaying the destabilization of the system’s equilibrium points. It is shown that while low magnetic field strengths favor the onset of chaotic motion directly from the steady state, stronger magnetic field strengths favor the onset of periodic convection from the steady state prior to the appearance of chaotic motion. We observe here that the applied magnetic field regulates the onset of chaotic and periodic motions in the system and therefore, has a rheostatic control over chaotic and periodic behaviors.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"192 ","pages":"Article 116020"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925000335","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with a weakly nonlinear study of two-dimensional Rayleigh–Bénard magnetoconvection using a simplified five-dimensional Lorenz model. The governing equations of the system are nondimensionalized and formulated in terms of the stream function and the scalar magnetic potential. A five-modal Fourier truncation scheme is employed and the resulting equations are scaled to obtain a five-dimensional autonomous dynamical system. The Hopf-Rayleigh number, signifying Hopf bifurcation, is numerically evaluated from the analysis of weakly nonlinear stability. Chaotic and periodic motions are depicted by plotting bifurcation diagrams, largest Lyapunov exponent (LLE) diagrams and three-dimensional projections of the phase-space. For a fixed set of parameter values, increasing the strength of the applied magnetic field is found to increase the Hopf-Rayleigh number, thereby delaying the destabilization of the system’s equilibrium points. It is shown that while low magnetic field strengths favor the onset of chaotic motion directly from the steady state, stronger magnetic field strengths favor the onset of periodic convection from the steady state prior to the appearance of chaotic motion. We observe here that the applied magnetic field regulates the onset of chaotic and periodic motions in the system and therefore, has a rheostatic control over chaotic and periodic behaviors.
磁场对五维磁对流洛伦兹系统混沌和周期运动开始的流变效应
本文用简化的五维洛伦兹模型研究了二维瑞利-巴萨纳德磁对流的弱非线性问题。系统的控制方程是无因次化的,用流函数和标量磁势表示。采用五模态傅立叶截断格式,对得到的方程进行缩放,得到一个五维自主动力系统。从弱非线性稳定性分析出发,对表示Hopf分岔的Hopf- rayleigh数进行了数值计算。通过绘制分岔图、最大李雅普诺夫指数(LLE)图和相空间的三维投影来描述混沌和周期运动。对于一组固定的参数值,增加外加磁场的强度可以增加Hopf-Rayleigh数,从而延缓系统平衡点的失稳。结果表明,低磁场强度有利于混沌运动直接从稳态开始,而强磁场强度有利于混沌运动出现之前从稳态开始的周期性对流。我们在这里观察到,外加磁场调节系统中混沌和周期运动的开始,因此,对混沌和周期行为具有流变控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信