Gauss quadrature rules for integrals involving weight functions with variable exponents and an application to weakly singular Volterra integral equations

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Chafik Allouch, Gradimir V Milovanović
{"title":"Gauss quadrature rules for integrals involving weight functions with variable exponents and an application to weakly singular Volterra integral equations","authors":"Chafik Allouch, Gradimir V Milovanović","doi":"10.1093/imanum/drae088","DOIUrl":null,"url":null,"abstract":"This paper presents a numerical integration approach that can be used to approximate on a finite interval, the integrals of functions that contain Jacobi weights with variable exponents. A modification of the integrand close to the singularities is needed, and a new modification is proposed. An application of such a rule to the numerical solution of variable-exponent weakly singular Volterra integral equations of the second kind is also explored. In the space of continuous functions, the stability and the error estimates are demonstrated, and numerical tests that validate these estimates are conducted.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"59 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae088","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a numerical integration approach that can be used to approximate on a finite interval, the integrals of functions that contain Jacobi weights with variable exponents. A modification of the integrand close to the singularities is needed, and a new modification is proposed. An application of such a rule to the numerical solution of variable-exponent weakly singular Volterra integral equations of the second kind is also explored. In the space of continuous functions, the stability and the error estimates are demonstrated, and numerical tests that validate these estimates are conducted.
变指数权函数积分的高斯积分规则及其在弱奇异Volterra积分方程中的应用
本文提出了一种数值积分方法,可用于在有限区间内逼近含有可变指数雅可比权值的函数的积分。需要对被积函数进行接近奇异点的修正,并提出了一种新的修正。并探讨了该规则在第二类变指数弱奇异Volterra积分方程数值解中的应用。在连续函数空间中,证明了该方法的稳定性和误差估计,并进行了数值试验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信