Compound Poisson particle approximation for McKean–Vlasov SDEs

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Xicheng Zhang
{"title":"Compound Poisson particle approximation for McKean–Vlasov SDEs","authors":"Xicheng Zhang","doi":"10.1093/imanum/drae095","DOIUrl":null,"url":null,"abstract":"We present a comprehensive discretization scheme for linear and nonlinear stochastic differential equations (SDEs) driven by either Brownian motions or $\\alpha $-stable processes. Our approach utilizes compound Poisson particle approximations, allowing for simultaneous discretization of both the time and space variables in McKean–Vlasov SDEs. Notably, the approximation processes can be represented as a Markov chain with values on a lattice. Importantly, we demonstrate the propagation of chaos under relatively mild assumptions on the coefficients, including those with polynomial growth. This result establishes the convergence of the particle approximations towards the true solutions of the McKean–Vlasov SDEs. By only imposing moment conditions on the intensity measure of compound Poisson processes our approximation exhibits universality. In the case of ordinary differential equations (ODEs) we investigate scenarios where the drift term satisfies the one-sided Lipschitz assumption. We prove the optimal convergence rate for Filippov solutions in this setting. Additionally, we establish a functional central limit theorem for the approximation of ODEs and show the convergence of invariant measures for linear SDEs. As a practical application we construct a compound Poisson approximation for two-dimensional Navier–Stokes equations on the torus and demonstrate the optimal convergence rate.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"38 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae095","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present a comprehensive discretization scheme for linear and nonlinear stochastic differential equations (SDEs) driven by either Brownian motions or $\alpha $-stable processes. Our approach utilizes compound Poisson particle approximations, allowing for simultaneous discretization of both the time and space variables in McKean–Vlasov SDEs. Notably, the approximation processes can be represented as a Markov chain with values on a lattice. Importantly, we demonstrate the propagation of chaos under relatively mild assumptions on the coefficients, including those with polynomial growth. This result establishes the convergence of the particle approximations towards the true solutions of the McKean–Vlasov SDEs. By only imposing moment conditions on the intensity measure of compound Poisson processes our approximation exhibits universality. In the case of ordinary differential equations (ODEs) we investigate scenarios where the drift term satisfies the one-sided Lipschitz assumption. We prove the optimal convergence rate for Filippov solutions in this setting. Additionally, we establish a functional central limit theorem for the approximation of ODEs and show the convergence of invariant measures for linear SDEs. As a practical application we construct a compound Poisson approximation for two-dimensional Navier–Stokes equations on the torus and demonstrate the optimal convergence rate.
McKean-Vlasov SDEs的复合泊松粒子近似
我们提出了一个由布朗运动或$\ α $稳定过程驱动的线性和非线性随机微分方程(SDEs)的综合离散化方案。我们的方法利用复合泊松粒子近似,允许在McKean-Vlasov SDEs中同时离散时间和空间变量。值得注意的是,近似过程可以表示为具有格上值的马尔可夫链。重要的是,我们证明了混沌在相对温和的系数假设下的传播,包括那些多项式增长的系数。这一结果建立了McKean-Vlasov SDEs粒子逼近真解的收敛性。通过仅对复合泊松过程的强度度量施加力矩条件,我们的近似具有普遍性。对于常微分方程(ode),我们研究了漂移项满足单侧Lipschitz假设的情形。我们证明了在这种情况下Filippov解的最优收敛速率。此外,我们建立了一个泛函中心极限定理,证明了线性sde不变测度的收敛性。作为一个实际应用,我们构造了二维Navier-Stokes方程在环面上的复合泊松近似,并证明了其最优收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信