Distinct photon-ALP propagation modes

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Qing-Hong Cao, Zuowei Liu and Jun-Chen Wang
{"title":"Distinct photon-ALP propagation modes","authors":"Qing-Hong Cao, Zuowei Liu and Jun-Chen Wang","doi":"10.1088/1475-7516/2025/01/099","DOIUrl":null,"url":null,"abstract":"Measurement of cosmic photons may reveal their propagation in the interstellar environment, thereby offering a promising way to probe axions and axion-like particles (ALPs). Numerical methods are usually used to compute the propagation of the photon-ALP beam due to the complexity of both the interstellar magnetic field and the evolution equation. However, under certain conditions, the evolution equation can be greatly simplified so that the photon-ALP propagation can be analytically solved. By using analytic methods, we find two distinct photon-ALP propagation modes, determined by the relative magnitude of the photon-ALP mixing term in comparison to the photon attenuation term. In one mode, the intensity of photons decreases with the increasing distance; in the other mode, it also exhibits oscillatory behavior. To distinguish the two propagation modes, we compute the observable quantities such as the photon survival probability and the degree of polarization. We also determine through analytic methods the conditions under which maximum polarization can be observed and the corresponding upper bound of the survival probability.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"50 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/099","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Measurement of cosmic photons may reveal their propagation in the interstellar environment, thereby offering a promising way to probe axions and axion-like particles (ALPs). Numerical methods are usually used to compute the propagation of the photon-ALP beam due to the complexity of both the interstellar magnetic field and the evolution equation. However, under certain conditions, the evolution equation can be greatly simplified so that the photon-ALP propagation can be analytically solved. By using analytic methods, we find two distinct photon-ALP propagation modes, determined by the relative magnitude of the photon-ALP mixing term in comparison to the photon attenuation term. In one mode, the intensity of photons decreases with the increasing distance; in the other mode, it also exhibits oscillatory behavior. To distinguish the two propagation modes, we compute the observable quantities such as the photon survival probability and the degree of polarization. We also determine through analytic methods the conditions under which maximum polarization can be observed and the corresponding upper bound of the survival probability.
不同的光子- alp传播模式
对宇宙光子的测量可能揭示它们在星际环境中的传播,从而为探测轴子和类轴子粒子(ALPs)提供了一种有希望的方法。由于星际磁场和演化方程的复杂性,通常采用数值方法来计算光子- alp光束的传播。然而,在一定条件下,演化方程可以大大简化,从而可以解析求解光子- alp传播。通过分析方法,我们发现了两种不同的光子- alp传播模式,这是由光子- alp混合项与光子衰减项的相对大小决定的。在一种模式下,光子强度随距离的增加而减小;在另一种模式下,它也表现出振荡行为。为了区分两种传输模式,我们计算了光子存活概率和偏振度等可观测量。并通过解析方法确定了观测到最大极化的条件和相应的生存概率上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信