{"title":"Triple knockdown of CD11a , CD49d , and PSGL1 in T cells reduces CAR-T cell toxicity but preserves activity against solid tumors in mice","authors":"Hongye Wang, Zhaorong Wu, Dan Cui, Linke Bian, Zhigang Zheng, Jiufei Zhu, Haigang Geng, Zhen Sun, Yixiao Pan, Yaoping Shi, Qiaoyong Yi, Zhenyu Song, Yantao Li, Kangjie Shen, Yuan Li, Weiming Shen, Hexin Yan, Ruidong Hao, Minmin Sun, Shuangshung Zhang, Chuanjie Zhang, Haojie Jin, Bo Zhai","doi":"10.1126/scitranslmed.adl6432","DOIUrl":null,"url":null,"abstract":"Chimeric antigen receptor (CAR)–T cell therapies have revolutionized the landscape of cancer treatment, in particular in the context of hematologic malignancies. However, for solid tumors that lack tumor-specific antigens, CAR-T cells can infiltrate and attack nonmalignant tissues expressing the CAR target antigen, leading to on-target, off-tumor toxicity. Severe on-target, off-tumor toxicities have been observed in clinical trials of CAR-T therapy for solid tumors, highlighting the need to address this issue. Here, we demonstrated that targeting the cell adhesion and migration molecules lymphocyte function–associated antigen 1 (LFA-1; CD11a/CD18) and very late activation antigen 4 (VLA-4; CD49d/CD29) with blocking antibodies reduced the on-target, off-tumor toxicity of CAR-T cells in mice. To translate this observation into improved CAR-T cell therapy, we either knocked out both <jats:italic>CD11a</jats:italic> and <jats:italic>CD49d</jats:italic> or knocked down <jats:italic>CD11a</jats:italic> and <jats:italic>CD49d</jats:italic> along with <jats:italic>PSGL1</jats:italic> , another cell adhesion molecule, in CAR-T cells. We found that these modified CAR-T cells exhibited reduced on-target, off-tumor toxicity in vivo without affecting CAR-T cell efficacy. Furthermore, we showed that this approach promoted T cell memory formation and decreased tonic signaling. On the basis of these data, we engineered a human version of these low-toxicity CAR-T cells and further validated the feasibility of this approach in vitro and in vivo. Together, these results provide a potential solution to address the clinical challenge of on-target, off-tumor toxicity in CAR-T therapy.","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"24 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1126/scitranslmed.adl6432","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chimeric antigen receptor (CAR)–T cell therapies have revolutionized the landscape of cancer treatment, in particular in the context of hematologic malignancies. However, for solid tumors that lack tumor-specific antigens, CAR-T cells can infiltrate and attack nonmalignant tissues expressing the CAR target antigen, leading to on-target, off-tumor toxicity. Severe on-target, off-tumor toxicities have been observed in clinical trials of CAR-T therapy for solid tumors, highlighting the need to address this issue. Here, we demonstrated that targeting the cell adhesion and migration molecules lymphocyte function–associated antigen 1 (LFA-1; CD11a/CD18) and very late activation antigen 4 (VLA-4; CD49d/CD29) with blocking antibodies reduced the on-target, off-tumor toxicity of CAR-T cells in mice. To translate this observation into improved CAR-T cell therapy, we either knocked out both CD11a and CD49d or knocked down CD11a and CD49d along with PSGL1 , another cell adhesion molecule, in CAR-T cells. We found that these modified CAR-T cells exhibited reduced on-target, off-tumor toxicity in vivo without affecting CAR-T cell efficacy. Furthermore, we showed that this approach promoted T cell memory formation and decreased tonic signaling. On the basis of these data, we engineered a human version of these low-toxicity CAR-T cells and further validated the feasibility of this approach in vitro and in vivo. Together, these results provide a potential solution to address the clinical challenge of on-target, off-tumor toxicity in CAR-T therapy.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.