Transcriptional responses to chronic oxidative stress require cholinergic activation of G-protein-coupled receptor signaling.

Kasturi Biswas, Caroline Moore, Hannah Rogers, Khursheed A Wani, Read Pukkila-Worley, Daniel P Higgins, Amy K Walker, Gregory P Mullen, James B Rand, Michael M Francis
{"title":"Transcriptional responses to chronic oxidative stress require cholinergic activation of G-protein-coupled receptor signaling.","authors":"Kasturi Biswas, Caroline Moore, Hannah Rogers, Khursheed A Wani, Read Pukkila-Worley, Daniel P Higgins, Amy K Walker, Gregory P Mullen, James B Rand, Michael M Francis","doi":"10.1101/2025.01.06.628021","DOIUrl":null,"url":null,"abstract":"<p><p>Organisms have evolved protective strategies that are geared toward limiting cellular damage and enhancing organismal survival in the face of environmental stresses, but how these protective mechanisms are coordinated remains unclear. Here, we define a requirement for neural activity in mobilizing the antioxidant defenses of the nematode <i>Caenorhabditis elegans</i> both during chronic oxidative stress and prior to its onset. We show that acetylcholine-deficient mutants are particularly vulnerable to chronic oxidative stress. We find that extended oxidative stress mobilizes a broad transcriptional response which is strongly dependent on both cholinergic signaling and activation of the muscarinic G-protein acetylcholine coupled receptor (mAChR) GAR-3. Gene enrichment analysis revealed a lack of upregulation of proteasomal proteolysis machinery in both cholinergic-deficient and <i>gar-3</i> mAChR mutants, suggesting that muscarinic activation is critical for stress-responsive upregulation of protein degradation pathways. Further, we find that GAR-3 overexpression in cholinergic motor neurons prolongs survival during chronic oxidative stress. Our studies demonstrate neuronal modulation of antioxidant defenses through cholinergic activation of G protein-coupled receptor signaling pathways, defining new potential links between cholinergic signaling, oxidative damage, and neurodegenerative disease.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741395/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.01.06.628021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Organisms have evolved protective strategies that are geared toward limiting cellular damage and enhancing organismal survival in the face of environmental stresses, but how these protective mechanisms are coordinated remains unclear. Here, we define a requirement for neural activity in mobilizing the antioxidant defenses of the nematode Caenorhabditis elegans both during chronic oxidative stress and prior to its onset. We show that acetylcholine-deficient mutants are particularly vulnerable to chronic oxidative stress. We find that extended oxidative stress mobilizes a broad transcriptional response which is strongly dependent on both cholinergic signaling and activation of the muscarinic G-protein acetylcholine coupled receptor (mAChR) GAR-3. Gene enrichment analysis revealed a lack of upregulation of proteasomal proteolysis machinery in both cholinergic-deficient and gar-3 mAChR mutants, suggesting that muscarinic activation is critical for stress-responsive upregulation of protein degradation pathways. Further, we find that GAR-3 overexpression in cholinergic motor neurons prolongs survival during chronic oxidative stress. Our studies demonstrate neuronal modulation of antioxidant defenses through cholinergic activation of G protein-coupled receptor signaling pathways, defining new potential links between cholinergic signaling, oxidative damage, and neurodegenerative disease.

长时间氧化应激的转录反应需要g蛋白偶联受体信号的胆碱能激活。
生物已经进化出了保护策略,以限制细胞损伤和提高面对环境压力的生物存活率,但这些保护机制是如何协调的尚不清楚。在这里,我们定义了在长时间氧化应激期间和发作前动员秀丽隐杆线虫抗氧化防御的神经活动的要求。我们发现缺乏乙酰胆碱的突变体特别容易受到长时间氧化应激的影响。我们发现,长时间的氧化应激调动了广泛的转录反应,这强烈依赖于胆碱能信号传导和毒蕈碱g蛋白乙酰胆碱偶联受体(mAChR) GAR-3的激活。基因富集分析显示,在胆碱能缺乏和gar-3 mAChR突变体中,蛋白酶体蛋白水解机制缺乏上调,这表明毒蕈碱激活对于蛋白质降解途径的应激反应上调至关重要。此外,我们发现胆碱能运动神经元中GAR-3的过表达可以延长氧化应激期间的存活时间。我们的研究证明了神经元通过胆碱能激活G蛋白偶联受体信号通路来调节抗氧化防御,从而确定了胆碱能信号、氧化损伤和神经退行性疾病之间的新的潜在联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信