Engineering of CRISPR-Cas PAM recognition using deep learning of vast evolutionary data.

Stephen Nayfach, Aadyot Bhatnagar, Andrey Novichkov, Gabriella O Estevam, Nahye Kim, Emily Hill, Jeffrey A Ruffolo, Rachel Silverstein, Joseph Gallagher, Benjamin Kleinstiver, Alexander J Meeske, Peter Cameron, Ali Madani
{"title":"Engineering of CRISPR-Cas PAM recognition using deep learning of vast evolutionary data.","authors":"Stephen Nayfach, Aadyot Bhatnagar, Andrey Novichkov, Gabriella O Estevam, Nahye Kim, Emily Hill, Jeffrey A Ruffolo, Rachel Silverstein, Joseph Gallagher, Benjamin Kleinstiver, Alexander J Meeske, Peter Cameron, Ali Madani","doi":"10.1101/2025.01.06.631536","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-Cas enzymes must recognize a protospacer-adjacent motif (PAM) to edit a genomic site, significantly limiting the range of targetable sequences in a genome. Machine learning-based protein engineering provides a powerful solution to efficiently generate Cas protein variants tailored to recognize specific PAMs. Here, we present Protein2PAM, an evolution-informed deep learning model trained on a dataset of over 45,000 CRISPR-Cas PAMs. Protein2PAM rapidly and accurately predicts PAM specificity directly from Cas proteins across Type I, II, and V CRISPR-Cas systems. Using <i>in silico</i> deep mutational scanning, we demonstrate that the model can identify residues critical for PAM recognition in Cas9 without utilizing structural information. As a proof of concept for protein engineering, we employ Protein2PAM to computationally evolve Nme1Cas9, generating variants with broadened PAM recognition and up to a 50-fold increase in PAM cleavage rates compared to the wild-type under <i>in vitro</i> conditions. This work represents the first successful application of machine learning to achieve customization of Cas enzymes for alternate PAM recognition, paving the way for personalized genome editing.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741284/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.01.06.631536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR-Cas enzymes must recognize a protospacer-adjacent motif (PAM) to edit a genomic site, significantly limiting the range of targetable sequences in a genome. Machine learning-based protein engineering provides a powerful solution to efficiently generate Cas protein variants tailored to recognize specific PAMs. Here, we present Protein2PAM, an evolution-informed deep learning model trained on a dataset of over 45,000 CRISPR-Cas PAMs. Protein2PAM rapidly and accurately predicts PAM specificity directly from Cas proteins across Type I, II, and V CRISPR-Cas systems. Using in silico deep mutational scanning, we demonstrate that the model can identify residues critical for PAM recognition in Cas9 without utilizing structural information. As a proof of concept for protein engineering, we employ Protein2PAM to computationally evolve Nme1Cas9, generating variants with broadened PAM recognition and up to a 50-fold increase in PAM cleavage rates compared to the wild-type under in vitro conditions. This work represents the first successful application of machine learning to achieve customization of Cas enzymes for alternate PAM recognition, paving the way for personalized genome editing.

利用大量进化数据的深度学习的CRISPR-Cas PAM识别工程。
CRISPR-Cas酶必须识别原间隔邻近基序(protospacer-邻基序,PAM)才能编辑基因组位点,这极大地限制了基因组中可靶向序列的范围。基于机器学习的蛋白质工程提供了一种强大的解决方案,可以有效地生成适合识别特定pam的Cas蛋白变体。在这里,我们提出了Protein2PAM,这是一个基于超过45,000个CRISPR-Cas pam数据集训练的进化信息深度学习模型。Protein2PAM直接从I型、II型和V型CRISPR-Cas系统中的Cas蛋白中快速准确地预测PAM特异性。利用计算机深度突变扫描,我们证明该模型可以在不利用结构信息的情况下识别Cas9中PAM识别的关键残基。作为蛋白质工程概念的证明,我们使用Protein2PAM计算进化Nme1Cas9,产生具有更宽PAM识别的变体,在体外条件下,与野生型相比,PAM切割率提高了50倍。这项工作代表了机器学习首次成功应用于实现Cas酶的定制,用于替代PAM识别,为个性化基因组编辑铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信