Gadolinium-Free Cardiac MRI Myocardial Scar Detection by 4D Convolution Factorization.

Amine Amyar, Shiro Nakamori, Manuel Morales, Siyeop Yoon, Jennifer Rodriguez, Jiwon Kim, Robert M Judd, Jonathan W Weinsaft, Reza Nezafat
{"title":"Gadolinium-Free Cardiac MRI Myocardial Scar Detection by 4D Convolution Factorization.","authors":"Amine Amyar, Shiro Nakamori, Manuel Morales, Siyeop Yoon, Jennifer Rodriguez, Jiwon Kim, Robert M Judd, Jonathan W Weinsaft, Reza Nezafat","doi":"10.1007/978-3-031-43895-0_60","DOIUrl":null,"url":null,"abstract":"<p><p>Gadolinium-based contrast agents are commonly used in cardiac magnetic resonance (CMR) imaging to characterize myocardial scar tissue. Recent works using deep learning have shown the promise of contrast-free short-axis cine images to detect scars based on wall motion abnormalities (WMA) in ischemic patients. However, WMA can occur in patients without a scar. Moreover, the presence of a scar may not always be accompanied by WMA, particularly in non-ischemic heart disease, posing a significant challenge in detecting scars in such cases. To overcome this limitation, we propose a novel deep spatiotemporal residual attention network (ST-RAN) that leverages temporal and spatial information at different scales to detect scars in both ischemic and non-ischemic heart diseases. Our model comprises three primary components. First, we develop a novel factorized 4D (3D+time) convolutional layer that extracts 3D spatial features of the heart and a deep 1D kernel in the temporal direction to extract heart motion. Secondly, we enhance the power of the 4D (3D+time) layer with spatiotemporal attention to extract rich whole-heart features while tracking the long-range temporal relationship between the frames. Lastly, we introduce a residual attention block that extracts spatial and temporal features at different scales to obtain global and local motion features and to detect subtle changes in contrast related to scar. We train and validate our model on a large dataset of 3000 patients who underwent clinical CMR with various indications and different field strengths (1.5T, 3T) from multiple vendors (GE, Siemens) to demonstrate the generalizability and robustness of our model. We show that our model works on both ischemic and non-ischemic heart diseases outperforming state-of-the-art methods. Our code is available at https://github.com/HMS-CardiacMR/Myocardial_Scar_Detection.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14221 ","pages":"639-648"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741542/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43895-0_60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gadolinium-based contrast agents are commonly used in cardiac magnetic resonance (CMR) imaging to characterize myocardial scar tissue. Recent works using deep learning have shown the promise of contrast-free short-axis cine images to detect scars based on wall motion abnormalities (WMA) in ischemic patients. However, WMA can occur in patients without a scar. Moreover, the presence of a scar may not always be accompanied by WMA, particularly in non-ischemic heart disease, posing a significant challenge in detecting scars in such cases. To overcome this limitation, we propose a novel deep spatiotemporal residual attention network (ST-RAN) that leverages temporal and spatial information at different scales to detect scars in both ischemic and non-ischemic heart diseases. Our model comprises three primary components. First, we develop a novel factorized 4D (3D+time) convolutional layer that extracts 3D spatial features of the heart and a deep 1D kernel in the temporal direction to extract heart motion. Secondly, we enhance the power of the 4D (3D+time) layer with spatiotemporal attention to extract rich whole-heart features while tracking the long-range temporal relationship between the frames. Lastly, we introduce a residual attention block that extracts spatial and temporal features at different scales to obtain global and local motion features and to detect subtle changes in contrast related to scar. We train and validate our model on a large dataset of 3000 patients who underwent clinical CMR with various indications and different field strengths (1.5T, 3T) from multiple vendors (GE, Siemens) to demonstrate the generalizability and robustness of our model. We show that our model works on both ischemic and non-ischemic heart diseases outperforming state-of-the-art methods. Our code is available at https://github.com/HMS-CardiacMR/Myocardial_Scar_Detection.

无钆心脏MRI心肌瘢痕的4D卷积分解检测。
钆基造影剂通常用于心脏磁共振(CMR)成像,以表征心肌疤痕组织。最近使用深度学习的研究表明,无对比度短轴电影图像有望检测基于壁运动异常(WMA)的缺血性患者疤痕。然而,无瘢痕的患者也可能发生WMA。此外,疤痕的存在可能并不总是伴随着WMA,特别是在非缺血性心脏病中,这对在这种情况下检测疤痕提出了重大挑战。为了克服这一限制,我们提出了一种新的深度时空剩余注意网络(ST-RAN),该网络利用不同尺度的时空信息来检测缺血性和非缺血性心脏病的疤痕。我们的模型包括三个主要部分。首先,我们开发了一种新的分解4D (3D+时间)卷积层来提取心脏的3D空间特征,并在时间方向上开发了一个深1D核来提取心脏运动。其次,利用时空关注增强4D (3D+time)层的能力,提取丰富的全心特征,同时跟踪帧间的长期时间关系;最后,我们引入了残差注意块,提取不同尺度的空间和时间特征,以获得全局和局部运动特征,并检测与疤痕相关的对比度的细微变化。我们在3000名临床CMR患者的大型数据集上训练和验证了我们的模型,这些患者具有不同的适应症和不同的场强(1.5T, 3T),来自多个供应商(GE, Siemens),以证明我们模型的通用性和稳健性。我们表明,我们的模型对缺血性和非缺血性心脏病都有效,优于最先进的方法。我们的代码可在https://github.com/HMS-CardiacMR/Myocardial_Scar_Detection上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信