Rapid pesticide residues detection by portable filter-array hyperspectral imaging.

Qifeng Li, Yunpeng Yang, Mei Tan, Hua Xia, Yingxiao Peng, Xiaoran Fu, Yinguo Huang, Xiaopeng Yang, Xiangyun Ma
{"title":"Rapid pesticide residues detection by portable filter-array hyperspectral imaging.","authors":"Qifeng Li, Yunpeng Yang, Mei Tan, Hua Xia, Yingxiao Peng, Xiaoran Fu, Yinguo Huang, Xiaopeng Yang, Xiangyun Ma","doi":"10.1016/j.saa.2025.125703","DOIUrl":null,"url":null,"abstract":"<p><p>The detection of pesticide residues in agricultural products is crucial for ensuring food safety. However, traditional methods are often constrained by slow processing speeds and a restricted analytical scope. This study presents a novel method that uses filter-array-based hyperspectral imaging enhanced by a dynamic filtering demosaicking algorithm, which significantly improves the speed and accuracy of detecting pesticide residues. Our approach enhances the spatial and spectral resolution of hyperspectral images, thereby providing a rapid and cost-effective alternative to conventional methods with an image integration time of 20 ms. Tested on both synthetic datasets and real agricultural samples, this technology demonstrates superior performance under high noise conditions and exceptional precision in spectral reconstruction at critical color edges. The practicality of this system is demonstrated by integrating a hyperspectral microfilter array with a smartphone's imaging sensor, thereby showcasing the feasibility of deploying this advanced detection technology in everyday portable devices for quick and convenient monitoring of pesticide residues.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"330 ","pages":"125703"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2025.125703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of pesticide residues in agricultural products is crucial for ensuring food safety. However, traditional methods are often constrained by slow processing speeds and a restricted analytical scope. This study presents a novel method that uses filter-array-based hyperspectral imaging enhanced by a dynamic filtering demosaicking algorithm, which significantly improves the speed and accuracy of detecting pesticide residues. Our approach enhances the spatial and spectral resolution of hyperspectral images, thereby providing a rapid and cost-effective alternative to conventional methods with an image integration time of 20 ms. Tested on both synthetic datasets and real agricultural samples, this technology demonstrates superior performance under high noise conditions and exceptional precision in spectral reconstruction at critical color edges. The practicality of this system is demonstrated by integrating a hyperspectral microfilter array with a smartphone's imaging sensor, thereby showcasing the feasibility of deploying this advanced detection technology in everyday portable devices for quick and convenient monitoring of pesticide residues.

便携式滤光片阵列高光谱成像快速检测农药残留。
农产品农药残留检测是保障食品安全的重要环节。然而,传统方法往往受到处理速度慢和分析范围有限的限制。本研究提出了一种新的基于滤波阵列的高光谱成像方法,该方法通过动态滤波去马赛克算法增强,显著提高了农药残留检测的速度和准确性。我们的方法提高了高光谱图像的空间和光谱分辨率,从而提供了一种快速和经济的替代传统方法,图像集成时间为20 ms。在合成数据集和实际农业样本上进行了测试,该技术在高噪声条件下表现出卓越的性能,在关键颜色边缘的光谱重建中表现出卓越的精度。通过将高光谱微滤波器阵列与智能手机的成像传感器集成在一起,证明了该系统的实用性,从而展示了将这种先进的检测技术部署在日常便携式设备中以快速方便地监测农药残留的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信