Significant oligodendrocyte progenitor and microglial cell death is a feature of remyelination following toxin-induced experimental demyelination.

IF 4.1 Q1 CLINICAL NEUROLOGY
Brain communications Pub Date : 2025-01-17 eCollection Date: 2025-01-01 DOI:10.1093/braincomms/fcae386
Hallie Gaitsch, Peggy Assinck, Penelope Dimas, Chao Zhao, Laura Morcom, David H Rowitch, Daniel S Reich, Robin J M Franklin
{"title":"Significant oligodendrocyte progenitor and microglial cell death is a feature of remyelination following toxin-induced experimental demyelination.","authors":"Hallie Gaitsch, Peggy Assinck, Penelope Dimas, Chao Zhao, Laura Morcom, David H Rowitch, Daniel S Reich, Robin J M Franklin","doi":"10.1093/braincomms/fcae386","DOIUrl":null,"url":null,"abstract":"<p><p>The extent to which glial cell turnover features in successful remyelination is unclear. In this study, the rat caudal cerebellar peduncle-ethidium bromide lesion model was used to profile oligodendroglial and microglial/macrophage cell death and proliferation dynamics over the course of repair. Lesioned and control tissue was co-labelled with antibody markers for cell identity, proliferation, and apoptosis (TUNEL assay), then imaged at full thickness using confocal microscopy and quantified using custom CellProfiler pipelines. Early remyelination time points were marked by an increased density of total proliferating cells, including oligodendrocyte progenitor cells. Late remyelination time points featured increased TUNEL+ oligodendrocyte progenitor cells: however, most TUNEL+ cells within remyelinating lesions were Iba1+ microglia/macrophages. These results indicate that repairing lesions are characterized by a high degree of glial cell death and suggest that monitoring cell death-related by-products might have clinical value in the setting of remyelination.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcae386"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcae386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The extent to which glial cell turnover features in successful remyelination is unclear. In this study, the rat caudal cerebellar peduncle-ethidium bromide lesion model was used to profile oligodendroglial and microglial/macrophage cell death and proliferation dynamics over the course of repair. Lesioned and control tissue was co-labelled with antibody markers for cell identity, proliferation, and apoptosis (TUNEL assay), then imaged at full thickness using confocal microscopy and quantified using custom CellProfiler pipelines. Early remyelination time points were marked by an increased density of total proliferating cells, including oligodendrocyte progenitor cells. Late remyelination time points featured increased TUNEL+ oligodendrocyte progenitor cells: however, most TUNEL+ cells within remyelinating lesions were Iba1+ microglia/macrophages. These results indicate that repairing lesions are characterized by a high degree of glial cell death and suggest that monitoring cell death-related by-products might have clinical value in the setting of remyelination.

显著的少突胶质细胞祖细胞和小胶质细胞死亡是毒素诱导实验性脱髓鞘后髓鞘再生的一个特征。
在成功的髓鞘再生过程中,胶质细胞的转换在多大程度上起作用尚不清楚。本研究采用大鼠尾侧小脑脚-溴化乙啶损伤模型,分析了修复过程中少突胶质细胞和小胶质细胞/巨噬细胞的死亡和增殖动态。病变组织和对照组织用抗体标记物共同标记细胞识别、增殖和凋亡(TUNEL测定),然后使用共聚焦显微镜全层成像,并使用定制的CellProfiler管道定量。早期髓鞘再生时间点的标志是总增殖细胞密度增加,包括少突胶质细胞祖细胞。在髓鞘再生后期,TUNEL+少突胶质细胞祖细胞增多,但髓鞘再生病变内大多数TUNEL+细胞为Iba1+小胶质细胞/巨噬细胞。这些结果表明,修复损伤的特点是高度的胶质细胞死亡,并提示监测细胞死亡相关的副产物可能在髓鞘再生的情况下具有临床价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信