Thomas-Otavio Peulen, Katherina Hemmen, Annemarie Greife, Benjamin M Webb, Suren Felekyan, Andrej Sali, Claus A M Seidel, Hugo Sanabria, Katrin G Heinze
{"title":"tttrlib: modular software for integrating fluorescence spectroscopy, imaging, and molecular modeling.","authors":"Thomas-Otavio Peulen, Katherina Hemmen, Annemarie Greife, Benjamin M Webb, Suren Felekyan, Andrej Sali, Claus A M Seidel, Hugo Sanabria, Katrin G Heinze","doi":"10.1093/bioinformatics/btaf025","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>We introduce software for reading, writing and processing fluorescence single-molecule and image spectroscopy data and developing analysis pipelines to unify various spectroscopic analysis tools. Our software can be used for processing multiple experiment types, e.g. for time-resolved single-molecule spectroscopy, laser scanning microscopy, fluorescence correlation spectroscopy and image correlation spectroscopy. The software is file format agnostic and processes multiple time-resolved data formats and outputs. Our software eliminates the need for data conversion and mitigates data archiving issues.</p><p><strong>Availability and implementation: </strong>tttrlib is available via pip (https://pypi.org/project/tttrlib/) and bioconda while the open-source code is available via GitHub (https://github.com/fluorescence-tools/tttrlib). Presented examples and additional documentation demonstrating how to implement in vitro and live-cell image spectroscopy analysis are available at https://docs.peulen.xyz/tttrlib and https://zenodo.org/records/14002224.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796090/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Summary: We introduce software for reading, writing and processing fluorescence single-molecule and image spectroscopy data and developing analysis pipelines to unify various spectroscopic analysis tools. Our software can be used for processing multiple experiment types, e.g. for time-resolved single-molecule spectroscopy, laser scanning microscopy, fluorescence correlation spectroscopy and image correlation spectroscopy. The software is file format agnostic and processes multiple time-resolved data formats and outputs. Our software eliminates the need for data conversion and mitigates data archiving issues.
Availability and implementation: tttrlib is available via pip (https://pypi.org/project/tttrlib/) and bioconda while the open-source code is available via GitHub (https://github.com/fluorescence-tools/tttrlib). Presented examples and additional documentation demonstrating how to implement in vitro and live-cell image spectroscopy analysis are available at https://docs.peulen.xyz/tttrlib and https://zenodo.org/records/14002224.