PredCMB: predicting changes in microbial metabolites based on the gene-metabolite network analysis of shotgun metagenome data.

Jungyong Ji, Sungwon Jung
{"title":"PredCMB: predicting changes in microbial metabolites based on the gene-metabolite network analysis of shotgun metagenome data.","authors":"Jungyong Ji, Sungwon Jung","doi":"10.1093/bioinformatics/btaf020","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Microbiota-derived metabolites significantly impact host biology, prompting extensive research on metabolic shifts linked to the microbiota. Recent studies have explored both direct metabolite analyses and computational tools for inferring metabolic functions from microbial shotgun metagenome data. However, no existing tool specifically focuses on predicting changes in individual metabolite levels, as opposed to metabolic pathway activities, based on shotgun metagenome data. Understanding these changes is crucial for directly estimating the metabolic potential associated with microbial genomic content.</p><p><strong>Results: </strong>We introduce Predicting Changes in Microbial metaBolites (PredCMB), a novel method designed to predict alterations in individual metabolites between conditions using shotgun metagenome data and enzymatic gene-metabolite networks. PredCMB evaluates differential enzymatic gene abundance between conditions and estimates its influence on metabolite changes. To validate this approach, we applied it to two publicly available datasets comprising paired shotgun metagenomics and metabolomics data from inflammatory bowel disease cohorts and the cohort of gastrectomy for gastric cancer. Benchmark evaluations revealed that PredCMB outperformed a previous method by demonstrating higher correlations between predicted metabolite changes and experimentally measured changes. Notably, it identified metabolite classes exhibiting major alterations between conditions. By enabling the prediction of metabolite changes directly from shotgun metagenome data, PredCMB provides deeper insights into microbial metabolic dynamics than existing methods focused on pathway activity evaluation. Its potential applications include refining target metabolite selection in microbial metabolomic studies and assessing the contributions of microbial metabolites to disease pathogenesis.</p><p><strong>Availability and implementation: </strong>Freely available to non-commercial users at https://www.sysbiolab.org/predcmb.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771765/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Microbiota-derived metabolites significantly impact host biology, prompting extensive research on metabolic shifts linked to the microbiota. Recent studies have explored both direct metabolite analyses and computational tools for inferring metabolic functions from microbial shotgun metagenome data. However, no existing tool specifically focuses on predicting changes in individual metabolite levels, as opposed to metabolic pathway activities, based on shotgun metagenome data. Understanding these changes is crucial for directly estimating the metabolic potential associated with microbial genomic content.

Results: We introduce Predicting Changes in Microbial metaBolites (PredCMB), a novel method designed to predict alterations in individual metabolites between conditions using shotgun metagenome data and enzymatic gene-metabolite networks. PredCMB evaluates differential enzymatic gene abundance between conditions and estimates its influence on metabolite changes. To validate this approach, we applied it to two publicly available datasets comprising paired shotgun metagenomics and metabolomics data from inflammatory bowel disease cohorts and the cohort of gastrectomy for gastric cancer. Benchmark evaluations revealed that PredCMB outperformed a previous method by demonstrating higher correlations between predicted metabolite changes and experimentally measured changes. Notably, it identified metabolite classes exhibiting major alterations between conditions. By enabling the prediction of metabolite changes directly from shotgun metagenome data, PredCMB provides deeper insights into microbial metabolic dynamics than existing methods focused on pathway activity evaluation. Its potential applications include refining target metabolite selection in microbial metabolomic studies and assessing the contributions of microbial metabolites to disease pathogenesis.

Availability and implementation: Freely available to non-commercial users at https://www.sysbiolab.org/predcmb.

PredCMB:基于霰弹枪宏基因组数据的基因-代谢物网络分析预测微生物代谢物的变化。
动机:微生物群衍生的代谢物显著影响宿主生物学,促进了与微生物群相关的代谢变化的广泛研究。最近的研究探索了直接代谢物分析和从微生物散弹枪宏基因组数据推断代谢功能的计算工具。然而,目前还没有工具专门用于预测个体代谢物水平的变化,而不是基于散弹枪宏基因组数据的代谢途径活性。了解这些变化对于直接估计与微生物基因组含量相关的代谢潜力至关重要。结果:我们引入了PredCMB(预测微生物代谢物变化),这是一种利用鸟枪宏基因组数据和酶促基因代谢物网络预测不同条件下个体代谢物变化的新方法。PredCMB评估不同条件下的酶基因丰度差异,并估计其对代谢物变化的影响。为了验证这种方法,我们将其应用于两个公开可用的数据集,包括来自炎症性肠病(IBD)队列和胃癌切除术队列的配对霰弹枪宏基因组学和代谢组学数据。基准评估显示,PredCMB在预测的代谢物变化与实验测量的变化之间表现出更高的相关性,优于先前的方法。值得注意的是,它确定了在不同条件下表现出重大变化的代谢物类别。通过直接从散弹枪宏基因组数据预测代谢物变化,PredCMB比现有的途径活性评估方法更深入地了解微生物代谢动力学。它的潜在应用包括在微生物代谢组学研究中精炼目标代谢物的选择,以及评估微生物代谢物对疾病发病机制的贡献。可用性:非商业用户可在https://www.sysbiolab.org/predcmb.Supplementary免费获得信息:补充数据可在Bioinformatics在线获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信