Abdeldjalil Madani, Nadine Alvarez, Steven Park, Madhuvika Murugan, David S. Perlin
{"title":"Rapid luminescence-based screening method for SARS- CoV-2 inhibitors discovery","authors":"Abdeldjalil Madani, Nadine Alvarez, Steven Park, Madhuvika Murugan, David S. Perlin","doi":"10.1016/j.slasd.2025.100211","DOIUrl":null,"url":null,"abstract":"<div><div>The COVID-19 pandemic has emphasized the necessity for rapid and adaptable drug screening platforms against live pathogenic viruses that require high levels of biosafety containment. Conventional antiviral testing is time-consuming and labor-intensive. Here, we outline the design and validation of a semi-automated drug-screening platform for SARS-CoV-2 that utilizes multiple liquid handlers, a stable A549 cell line expressing ACE2 and TMPRSS2 receptors, and a recombinant SARS-CoV-2 strain harboring the nano-luciferase gene. This platform allows for accelerated low-, mid-, and high-throughput screenings by bypassing the virus inactivation and the staining steps compared to assays utilizing fluorescent reporter viruses or immunofluorescence. First, we demonstrated that the luminescence signal obtained at 24 h post-infection is robust and can be used as a surrogate for fluorescent reporter viruses and immunofluorescence assays that require 48 h incubation post infection. We confirmed the susceptibility of the reporter virus to a panel of reference drugs and validated the luminescence signal in 96- and 384-well plates in accordance with NIH criteria for high-throughput screening. The validation assays showed reproducible results, robust Z factor of ≥0.5, and a coefficient of variation of <20% achieved in both 96 and 384-well plate formats. Lastly, we assessed the assay's performance by screening 240 compounds from the MMV Global Health Library, using the 384-well plate format and remdesivir as a control compound. The single point screening resulted in the identification of 48 hits that inhibited more than 50% of the viral growth. We selected the 15 most active compounds to evaluate their inhibitory concentration and their cytotoxicity, which resulted in the confirmation of the 3 most potent and least toxic compounds that were never reported as antivirals. These results confirm that our platform can be reliably employed for rapid drug screening against SARS-CoV-2 and can be easily adapted to other nano-luciferase reporter viruses.</div></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"31 ","pages":"Article 100211"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555225000048","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic has emphasized the necessity for rapid and adaptable drug screening platforms against live pathogenic viruses that require high levels of biosafety containment. Conventional antiviral testing is time-consuming and labor-intensive. Here, we outline the design and validation of a semi-automated drug-screening platform for SARS-CoV-2 that utilizes multiple liquid handlers, a stable A549 cell line expressing ACE2 and TMPRSS2 receptors, and a recombinant SARS-CoV-2 strain harboring the nano-luciferase gene. This platform allows for accelerated low-, mid-, and high-throughput screenings by bypassing the virus inactivation and the staining steps compared to assays utilizing fluorescent reporter viruses or immunofluorescence. First, we demonstrated that the luminescence signal obtained at 24 h post-infection is robust and can be used as a surrogate for fluorescent reporter viruses and immunofluorescence assays that require 48 h incubation post infection. We confirmed the susceptibility of the reporter virus to a panel of reference drugs and validated the luminescence signal in 96- and 384-well plates in accordance with NIH criteria for high-throughput screening. The validation assays showed reproducible results, robust Z factor of ≥0.5, and a coefficient of variation of <20% achieved in both 96 and 384-well plate formats. Lastly, we assessed the assay's performance by screening 240 compounds from the MMV Global Health Library, using the 384-well plate format and remdesivir as a control compound. The single point screening resulted in the identification of 48 hits that inhibited more than 50% of the viral growth. We selected the 15 most active compounds to evaluate their inhibitory concentration and their cytotoxicity, which resulted in the confirmation of the 3 most potent and least toxic compounds that were never reported as antivirals. These results confirm that our platform can be reliably employed for rapid drug screening against SARS-CoV-2 and can be easily adapted to other nano-luciferase reporter viruses.
期刊介绍:
Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease.
SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success.
SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies.
SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology.
SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).