Structure, Oligomerization, and Thermal Stability of a Recently Discovered Old Yellow Enzyme.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nakia Polidori, Peter Babin, Bastian Daniel, Karl Gruber
{"title":"Structure, Oligomerization, and Thermal Stability of a Recently Discovered Old Yellow Enzyme.","authors":"Nakia Polidori, Peter Babin, Bastian Daniel, Karl Gruber","doi":"10.1002/prot.26800","DOIUrl":null,"url":null,"abstract":"<p><p>The Old Yellow Enzyme from Ferrovum sp. JA12 (FOYE) displays an unusual thermal stability for an enzyme isolated from a mesophilic organism. We determined the crystal structure of this enzyme and performed bioinformatic characterization to get insights into its thermal stability. The enzyme displays a tetrameric quaternary structure; however, unlike the other tetrameric homologs, it clusters in a separate phylogenetic group and possesses unique interactions that stabilize this oligomeric state. The thermal stability of this enzyme is mainly due to an unusually high number of intramolecular hydrogen bonds. Finally, this study provides a general analysis of the forces driving the oligomerization in Old Yellow Enzymes.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26800","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Old Yellow Enzyme from Ferrovum sp. JA12 (FOYE) displays an unusual thermal stability for an enzyme isolated from a mesophilic organism. We determined the crystal structure of this enzyme and performed bioinformatic characterization to get insights into its thermal stability. The enzyme displays a tetrameric quaternary structure; however, unlike the other tetrameric homologs, it clusters in a separate phylogenetic group and possesses unique interactions that stabilize this oligomeric state. The thermal stability of this enzyme is mainly due to an unusually high number of intramolecular hydrogen bonds. Finally, this study provides a general analysis of the forces driving the oligomerization in Old Yellow Enzymes.

一种新发现的古老黄色酶的结构、寡聚和热稳定性。
来自Ferrovum sp. JA12的老黄酶(FOYE)表现出不同寻常的热稳定性,这是从中温微生物中分离出来的酶。我们确定了这种酶的晶体结构,并进行了生物信息学表征,以深入了解其热稳定性。酶呈四聚体四元结构;然而,与其他四聚体同源物不同,它聚集在一个单独的系统发育群中,并具有独特的相互作用,稳定了这种低聚体状态。这种酶的热稳定性主要是由于分子内氢键的数量异常高。最后,本研究提供了驱动老黄酶寡聚化的力的一般分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteins-Structure Function and Bioinformatics
Proteins-Structure Function and Bioinformatics 生物-生化与分子生物学
CiteScore
5.90
自引率
3.40%
发文量
172
审稿时长
3 months
期刊介绍: PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信