Phylogenetic position of the subfamily Symphrasinae (Insecta: Neuroptera), its intergeneric relationships and evolution of the raptorial condition within Mantispoidea.
{"title":"Phylogenetic position of the subfamily Symphrasinae (Insecta: Neuroptera), its intergeneric relationships and evolution of the raptorial condition within Mantispoidea.","authors":"Adrian Ardila-Camacho, Atilano Contreras-Ramos","doi":"10.1071/IS24033","DOIUrl":null,"url":null,"abstract":"<p><p>The superfamily Mantispoidea (Insecta: Neuroptera) includes the families Berothidae, Rhachiberothidae and Mantispidae. Among these taxa, the last two are collectively known as Raptorial Mantispoidea due to the presence of grasping forelegs for predatory habits. The Mantispidae classically included the subfamilies Symphrasinae, Drepanicinae, Calomantispinae and Mantispinae, yet recent research challenged this classification scheme as well as the monophyly of this family resulting in Symphrasinae being transferred to Rhachiberothidae. The phylogenetic position of the subfamily Symphrasinae within Mantispoidea is here inferred based on total evidence analysis combining three genes (COI , 16S and 18S ) and 72 morphological characters scored from living representatives of all Mantispidae subfamilies (12 genera), the 3 genera of Symphrasinae, and Rhachiberothinae (1 genus). Representatives of Berothidae (four genera) and Hemerobiidae (one genus) were used as outgroup taxa. Results of the total evidence analysis were compared with parsimony and maximum likelihood analyses of the morphological and molecular datasets of the COI , 16S and 18S genes. The resultant phylogeny under total evidence recovered Rhachiberothidae as a monophyletic group with strong support in which Symphrasinae was found as sister to Rhachiberothinae. The three genera contained in Symphrasinae, i.e. Anchieta , Plega and Trichoscelia were each recovered as monophyletic in the parsimony analysis, with Anchieta as sister to Trichoscelia + Plega . The family Mantispidae was also recovered as monophyletic and sister to Rhachiberothidae, with Mantispinae as sister to Calomantispinae + Drepanicinae. Evolution of the raptorial condition in Mantispoidea is discussed based on the performed analyses. The morphology and the structure of the raptorial foreleg and the prothorax (i.e. the raptorial system) support the close relationship of Symphrasinae with Rhachiberothinae rather than to other Mantispidae subfamilies which possess a distinctive and well-differentiated raptorial apparatus. The Rhachiberothidae (including Symphrasinae) are distinguished by the presence of a foretarsal Stitz organ. Furthermore, a sit-and-wait predatory strategy is hypothesised for this taxon, whereas the Mantispidae are likely sophisticated active-ambushing predators.</p>","PeriodicalId":54927,"journal":{"name":"Invertebrate Systematics","volume":"39 ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Systematics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/IS24033","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The superfamily Mantispoidea (Insecta: Neuroptera) includes the families Berothidae, Rhachiberothidae and Mantispidae. Among these taxa, the last two are collectively known as Raptorial Mantispoidea due to the presence of grasping forelegs for predatory habits. The Mantispidae classically included the subfamilies Symphrasinae, Drepanicinae, Calomantispinae and Mantispinae, yet recent research challenged this classification scheme as well as the monophyly of this family resulting in Symphrasinae being transferred to Rhachiberothidae. The phylogenetic position of the subfamily Symphrasinae within Mantispoidea is here inferred based on total evidence analysis combining three genes (COI , 16S and 18S ) and 72 morphological characters scored from living representatives of all Mantispidae subfamilies (12 genera), the 3 genera of Symphrasinae, and Rhachiberothinae (1 genus). Representatives of Berothidae (four genera) and Hemerobiidae (one genus) were used as outgroup taxa. Results of the total evidence analysis were compared with parsimony and maximum likelihood analyses of the morphological and molecular datasets of the COI , 16S and 18S genes. The resultant phylogeny under total evidence recovered Rhachiberothidae as a monophyletic group with strong support in which Symphrasinae was found as sister to Rhachiberothinae. The three genera contained in Symphrasinae, i.e. Anchieta , Plega and Trichoscelia were each recovered as monophyletic in the parsimony analysis, with Anchieta as sister to Trichoscelia + Plega . The family Mantispidae was also recovered as monophyletic and sister to Rhachiberothidae, with Mantispinae as sister to Calomantispinae + Drepanicinae. Evolution of the raptorial condition in Mantispoidea is discussed based on the performed analyses. The morphology and the structure of the raptorial foreleg and the prothorax (i.e. the raptorial system) support the close relationship of Symphrasinae with Rhachiberothinae rather than to other Mantispidae subfamilies which possess a distinctive and well-differentiated raptorial apparatus. The Rhachiberothidae (including Symphrasinae) are distinguished by the presence of a foretarsal Stitz organ. Furthermore, a sit-and-wait predatory strategy is hypothesised for this taxon, whereas the Mantispidae are likely sophisticated active-ambushing predators.
期刊介绍:
Invertebrate Systematics (formerly known as Invertebrate Taxonomy) is an international journal publishing original and significant contributions on the systematics, phylogeny and biogeography of all invertebrate taxa. Articles in the journal provide comprehensive treatments of clearly defined taxonomic groups, often emphasising their biodiversity patterns and/or biological aspects. The journal also includes contributions on the systematics of selected species that are of particular conservation, economic, medical or veterinary importance.
Invertebrate Systematics is a vital resource globally for scientists, students, conservation biologists, environmental consultants and government policy advisors who are interested in terrestrial, freshwater and marine systems.
Invertebrate Systematics is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.