The GLP-1R agonist semaglutide reshapes pancreatic cancer associated fibroblasts reducing collagen proline hydroxylation and favoring T lymphocyte infiltration.
Chiara Cencioni, Silvia Malatesta, Virginia Vigiano Benedetti, Valerio Licursi, Livia Perfetto, Federica Conte, Danilo Ranieri, Armando Bartolazzi, Martina Kunkl, Loretta Tuosto, Alberto Larghi, Geny Piro, Antonio Agostini, Giampaolo Tortora, Vincenzo Corbo, Carmine Carbone, Francesco Spallotta
{"title":"The GLP-1R agonist semaglutide reshapes pancreatic cancer associated fibroblasts reducing collagen proline hydroxylation and favoring T lymphocyte infiltration.","authors":"Chiara Cencioni, Silvia Malatesta, Virginia Vigiano Benedetti, Valerio Licursi, Livia Perfetto, Federica Conte, Danilo Ranieri, Armando Bartolazzi, Martina Kunkl, Loretta Tuosto, Alberto Larghi, Geny Piro, Antonio Agostini, Giampaolo Tortora, Vincenzo Corbo, Carmine Carbone, Francesco Spallotta","doi":"10.1186/s13046-024-03263-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metabolic syndrome represents a pancreatic ductal adenocarcinoma (PDAC) risk factor. Metabolic alterations favor PDAC onset, which occurs early upon dysmetabolism. Pancreatic neoplastic lesions evolve within a dense desmoplastic stroma, consisting in abundant extracellular matrix settled by cancer associated fibroblasts (CAFs). Hereby, dysmetabolism and PDAC association was analyzed focusing on CAF functions.</p><p><strong>Methods: </strong>PDAC development upon dysmetabolic conditions was investigated in: 1) high fat diet fed wild type immunocompetent syngeneic mice by orthotopic transplantation of pancreatic intraepithelial neoplasia (PanIN) organoids; and 2) primary pancreatic CAFs isolated from chemotherapy naïve PDAC patients with/without an history of metabolic syndrome.</p><p><strong>Results: </strong>The dysmetabolic-associated higher PDAC aggressiveness was paralleled by collagen fibril enrichment due to prolyl 4-hydroxylase subunit alpha 1 (P4HA1) increased function. Upon dysmetabolism, P4HA1 boosts collagen proline hydroxylation, intensifies collagen contraction strength, precluding PDAC infiltration. Noteworthy, semaglutide, an incretin agonist, prevents the higher dysmetabolism-dependent PDAC stromal deposition and allows T lymphocyte infiltration, reducing tumor development.</p><p><strong>Conclusions: </strong>These results shed light on novel therapeutic options for PDAC patients with metabolic syndrome aimed at PDAC stroma reshape.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"18"},"PeriodicalIF":11.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744909/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03263-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Metabolic syndrome represents a pancreatic ductal adenocarcinoma (PDAC) risk factor. Metabolic alterations favor PDAC onset, which occurs early upon dysmetabolism. Pancreatic neoplastic lesions evolve within a dense desmoplastic stroma, consisting in abundant extracellular matrix settled by cancer associated fibroblasts (CAFs). Hereby, dysmetabolism and PDAC association was analyzed focusing on CAF functions.
Methods: PDAC development upon dysmetabolic conditions was investigated in: 1) high fat diet fed wild type immunocompetent syngeneic mice by orthotopic transplantation of pancreatic intraepithelial neoplasia (PanIN) organoids; and 2) primary pancreatic CAFs isolated from chemotherapy naïve PDAC patients with/without an history of metabolic syndrome.
Results: The dysmetabolic-associated higher PDAC aggressiveness was paralleled by collagen fibril enrichment due to prolyl 4-hydroxylase subunit alpha 1 (P4HA1) increased function. Upon dysmetabolism, P4HA1 boosts collagen proline hydroxylation, intensifies collagen contraction strength, precluding PDAC infiltration. Noteworthy, semaglutide, an incretin agonist, prevents the higher dysmetabolism-dependent PDAC stromal deposition and allows T lymphocyte infiltration, reducing tumor development.
Conclusions: These results shed light on novel therapeutic options for PDAC patients with metabolic syndrome aimed at PDAC stroma reshape.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.