Analysis of Functional Cis-regulatory Elements Reveals Novel Transcriptional Regulatory Mechanisms in Gonadal Development.

IF 2.4 4区 医学 Q2 DEVELOPMENTAL BIOLOGY
Shizuka Kirino, Ryuichi Nakagawa, Maki Gau, Kei Takasawa, Yasuhiro Murakawa, Hideya Kawaji, Yoshihide Hayashizaki, Tomohiro Morio, Kenichi Kashimada
{"title":"Analysis of Functional Cis-regulatory Elements Reveals Novel Transcriptional Regulatory Mechanisms in Gonadal Development.","authors":"Shizuka Kirino, Ryuichi Nakagawa, Maki Gau, Kei Takasawa, Yasuhiro Murakawa, Hideya Kawaji, Yoshihide Hayashizaki, Tomohiro Morio, Kenichi Kashimada","doi":"10.1159/000543594","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have demonstrated that the production of bidirectional enhancer-derived transcripts (eRNAs) is a characteristic of an active Cis-regulatory element (CRE). Higher levels of eRNA synthesis correlate with the activation of histone modifications, a potentially valuable tool for deciphering the complexity of the gene regulatory network. To understand the changes of CREs during gonadal development in mice, we collected gonadal WT1-positive cells from the piggyBac-Wt1-mCherry-2A-EGFP (PBWt1-RG) reporter strain at E13.5, E16.5, and P0 in both sexes and conducted Cap Analysis of Gene Expression analysis (CAGE) which is capable to capture transcriptional starting site (TSS). We compared the levels of intergenic bidirectional RNA, i.e, potentially eRNA, according to sex at each stage (testis somatic cells vs ovary somatic cells at E13.5, E16.5, and P0) and stage in each sex (E13.5 vs E16.5, E16.5 vs P0, and E13.5 vs P0 in testis somatic cells or ovary somatic cells). Intergenic RNAs with significant changes (|Log2FC| > 1, p < 0.05) were selected. The TSS profile of intergenic RNA changed more profoundly in testis somatic cells than in ovary somatic cells, suggesting embryonic testicular development is driven by larger changes in a transcriptional regulatory network than ovarian development. Based on the profiles of the predicted transcription factors (TFs) that would bind to the active CREs during gonadal development, the NR4A, EGR, and TCF3 families would be novel TFs to play pivotal roles in gonadal development. Identifying active CREs using eRNAs would provide a means to comprehensively understand the transcriptional regulatory system, leading to valuable insights into the gonadal development of male and female individuals.</p>","PeriodicalId":49536,"journal":{"name":"Sexual Development","volume":" ","pages":"1-19"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sexual Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000543594","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies have demonstrated that the production of bidirectional enhancer-derived transcripts (eRNAs) is a characteristic of an active Cis-regulatory element (CRE). Higher levels of eRNA synthesis correlate with the activation of histone modifications, a potentially valuable tool for deciphering the complexity of the gene regulatory network. To understand the changes of CREs during gonadal development in mice, we collected gonadal WT1-positive cells from the piggyBac-Wt1-mCherry-2A-EGFP (PBWt1-RG) reporter strain at E13.5, E16.5, and P0 in both sexes and conducted Cap Analysis of Gene Expression analysis (CAGE) which is capable to capture transcriptional starting site (TSS). We compared the levels of intergenic bidirectional RNA, i.e, potentially eRNA, according to sex at each stage (testis somatic cells vs ovary somatic cells at E13.5, E16.5, and P0) and stage in each sex (E13.5 vs E16.5, E16.5 vs P0, and E13.5 vs P0 in testis somatic cells or ovary somatic cells). Intergenic RNAs with significant changes (|Log2FC| > 1, p < 0.05) were selected. The TSS profile of intergenic RNA changed more profoundly in testis somatic cells than in ovary somatic cells, suggesting embryonic testicular development is driven by larger changes in a transcriptional regulatory network than ovarian development. Based on the profiles of the predicted transcription factors (TFs) that would bind to the active CREs during gonadal development, the NR4A, EGR, and TCF3 families would be novel TFs to play pivotal roles in gonadal development. Identifying active CREs using eRNAs would provide a means to comprehensively understand the transcriptional regulatory system, leading to valuable insights into the gonadal development of male and female individuals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sexual Development
Sexual Development 生物-发育生物学
CiteScore
4.00
自引率
4.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: Recent discoveries in experimental and clinical research have led to impressive advances in our knowledge of the genetic and environmental mechanisms governing sex determination and differentiation, their evolution as well as the mutations or endocrine and metabolic abnormalities that interfere with normal gonadal development. ‘Sexual Development’ provides a unique forum for this rapidly expanding field. Its broad scope covers all aspects of genetics, molecular biology, embryology, endocrinology, evolution and pathology of sex determination and differentiation in humans and animals. It publishes high-quality original research manuscripts, review articles, short reports, case reports and commentaries. An internationally renowned and multidisciplinary editorial team of three chief editors, ten prominent scientists serving as section editors, and a distinguished panel of editorial board members ensures fast and author-friendly editorial processing and peer reviewing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信