WearMoCap: multimodal pose tracking for ubiquitous robot control using a smartwatch.

IF 2.9 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-01-03 eCollection Date: 2024-01-01 DOI:10.3389/frobt.2024.1478016
Fabian C Weigend, Neelesh Kumar, Oya Aran, Heni Ben Amor
{"title":"WearMoCap: multimodal pose tracking for ubiquitous robot control using a smartwatch.","authors":"Fabian C Weigend, Neelesh Kumar, Oya Aran, Heni Ben Amor","doi":"10.3389/frobt.2024.1478016","DOIUrl":null,"url":null,"abstract":"<p><p>We present WearMoCap, an open-source library to track the human pose from smartwatch sensor data and leveraging pose predictions for ubiquitous robot control. WearMoCap operates in three modes: 1) a Watch Only mode, which uses a smartwatch only, 2) a novel Upper Arm mode, which utilizes the smartphone strapped onto the upper arm and 3) a Pocket mode, which determines body orientation from a smartphone in any pocket. We evaluate all modes on large-scale datasets consisting of recordings from up to 8 human subjects using a range of consumer-grade devices. Further, we discuss real-robot applications of underlying works and evaluate WearMoCap in handover and teleoperation tasks, resulting in performances that are within 2 cm of the accuracy of the gold-standard motion capture system. Our Upper Arm mode provides the most accurate wrist position estimates with a Root Mean Squared prediction error of 6.79 cm. To evaluate WearMoCap in more scenarios and investigate strategies to mitigate sensor drift, we publish the WearMoCap system with thorough documentation as open source. The system is designed to foster future research in smartwatch-based motion capture for robotics applications where ubiquity matters. www.github.com/wearable-motion-capture.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"11 ","pages":"1478016"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11738771/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1478016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present WearMoCap, an open-source library to track the human pose from smartwatch sensor data and leveraging pose predictions for ubiquitous robot control. WearMoCap operates in three modes: 1) a Watch Only mode, which uses a smartwatch only, 2) a novel Upper Arm mode, which utilizes the smartphone strapped onto the upper arm and 3) a Pocket mode, which determines body orientation from a smartphone in any pocket. We evaluate all modes on large-scale datasets consisting of recordings from up to 8 human subjects using a range of consumer-grade devices. Further, we discuss real-robot applications of underlying works and evaluate WearMoCap in handover and teleoperation tasks, resulting in performances that are within 2 cm of the accuracy of the gold-standard motion capture system. Our Upper Arm mode provides the most accurate wrist position estimates with a Root Mean Squared prediction error of 6.79 cm. To evaluate WearMoCap in more scenarios and investigate strategies to mitigate sensor drift, we publish the WearMoCap system with thorough documentation as open source. The system is designed to foster future research in smartwatch-based motion capture for robotics applications where ubiquity matters. www.github.com/wearable-motion-capture.

WearMoCap:使用智能手表进行无处不在的机器人控制的多模态姿势跟踪。
我们介绍了WearMoCap,一个开源库,用于跟踪智能手表传感器数据中的人体姿势,并利用姿势预测无处不在的机器人控制。WearMoCap有三种模式:1)Watch Only模式,只使用智能手表;2)新颖的上臂模式,利用绑在上臂上的智能手机;3)Pocket模式,通过任何口袋里的智能手机来确定身体方向。我们评估了大规模数据集上的所有模式,这些数据集由多达8名人类受试者使用一系列消费级设备的记录组成。此外,我们讨论了底层作品的真实机器人应用,并评估了WearMoCap在切换和远程操作任务中的应用,从而使其性能与金标准运动捕捉系统的精度相差在2厘米以内。我们的上臂模式提供了最准确的手腕位置估计,均方根预测误差为6.79厘米。为了在更多的场景中评估WearMoCap并研究减轻传感器漂移的策略,我们将WearMoCap系统与完整的文档作为开源发布。该系统旨在促进未来基于智能手表的运动捕捉技术的研究,以实现无处不在的机器人应用。www.github.com/wearable-motion-capture。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信