Informed circular fields: a global reactive obstacle avoidance framework for robotic manipulators.

IF 2.9 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-01-03 eCollection Date: 2024-01-01 DOI:10.3389/frobt.2024.1447351
Marvin Becker, Philipp Caspers, Torsten Lilge, Sami Haddadin, Matthias A Müller
{"title":"Informed circular fields: a global reactive obstacle avoidance framework for robotic manipulators.","authors":"Marvin Becker, Philipp Caspers, Torsten Lilge, Sami Haddadin, Matthias A Müller","doi":"10.3389/frobt.2024.1447351","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present a global reactive motion planning framework designed for robotic manipulators navigating in complex dynamic environments. Utilizing local minima-free circular fields, our methodology generates reactive control commands while also leveraging global environmental information from arbitrary configuration space motion planners to identify promising trajectories around obstacles. Furthermore, we extend the virtual agents framework introduced in Becker et al. (2021) to incorporate this global information, simulating multiple robot trajectories with varying parameter sets to enhance avoidance strategies. Consequently, the proposed unified robotic motion planning framework seamlessly combines global trajectory planning with local reactive control and ensures comprehensive obstacle avoidance for the entire body of a robotic manipulator. The efficacy of the proposed approach is demonstrated through rigorous testing in over 4,000 simulation scenarios, where it consistently outperforms existing motion planners. Additionally, we validate our framework's performance in real-world experiments using a collaborative Franka Emika robot with vision feedback. Our experiments illustrate the robot's ability to promptly adapt its motion plan and effectively avoid unpredictable movements by humans within its workspace. Overall, our contributions offer a robust and versatile solution for global reactive motion planning in dynamic environments.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"11 ","pages":"1447351"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11738950/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1447351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a global reactive motion planning framework designed for robotic manipulators navigating in complex dynamic environments. Utilizing local minima-free circular fields, our methodology generates reactive control commands while also leveraging global environmental information from arbitrary configuration space motion planners to identify promising trajectories around obstacles. Furthermore, we extend the virtual agents framework introduced in Becker et al. (2021) to incorporate this global information, simulating multiple robot trajectories with varying parameter sets to enhance avoidance strategies. Consequently, the proposed unified robotic motion planning framework seamlessly combines global trajectory planning with local reactive control and ensures comprehensive obstacle avoidance for the entire body of a robotic manipulator. The efficacy of the proposed approach is demonstrated through rigorous testing in over 4,000 simulation scenarios, where it consistently outperforms existing motion planners. Additionally, we validate our framework's performance in real-world experiments using a collaborative Franka Emika robot with vision feedback. Our experiments illustrate the robot's ability to promptly adapt its motion plan and effectively avoid unpredictable movements by humans within its workspace. Overall, our contributions offer a robust and versatile solution for global reactive motion planning in dynamic environments.

通知圆形场:机器人操纵器的全局反应性避障框架。
针对机器人在复杂动态环境下的导航问题,提出了一种全局响应运动规划框架。利用局部无最小圆场,我们的方法生成响应控制命令,同时还利用来自任意配置空间运动规划器的全局环境信息来识别障碍物周围有希望的轨迹。此外,我们扩展了Becker等人(2021)中引入的虚拟代理框架,以整合这些全局信息,模拟具有不同参数集的多个机器人轨迹,以增强回避策略。因此,所提出的统一机器人运动规划框架将全局轨迹规划与局部反应控制无缝结合,保证了机器人整体的全面避障。通过在4000多个模拟场景中进行严格测试,证明了所提出方法的有效性,在这些场景中,它始终优于现有的运动规划器。此外,我们使用具有视觉反馈的协作式Franka Emika机器人在现实世界的实验中验证了我们的框架的性能。我们的实验说明了机器人能够迅速适应其运动计划,并有效地避免人类在其工作空间内不可预测的运动。总的来说,我们的贡献为动态环境中的全局反应运动规划提供了一个强大而通用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信