Alginate-Based Hydrogels with Amniotic Membrane Stem Cells for Wound Dressing Application.

IF 1.7 Q4 CELL BIOLOGY
Stem Cells and Cloning-Advances and Applications Pub Date : 2025-01-10 eCollection Date: 2025-01-01 DOI:10.2147/SCCAA.S493125
Nurul Fitriani, Gofarana Wilar, Angga Cipta Narsa, Khaled M Elamin, Nasrul Wathoni
{"title":"Alginate-Based Hydrogels with Amniotic Membrane Stem Cells for Wound Dressing Application.","authors":"Nurul Fitriani, Gofarana Wilar, Angga Cipta Narsa, Khaled M Elamin, Nasrul Wathoni","doi":"10.2147/SCCAA.S493125","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Chronic wounds are a common clinical problem that necessitate the exploration of novel regenerative therapies. We report a method to investigate the in vitro wound healing capacity of an innovative biomaterial, which is based on amniotic membrane-derived stem cells (AMSCs) embedded in an alginate hydrogel matrix. The aim of this study was to prepare an sodium alginate-based hydrogel, cross-linked calcium chloride (CaCl<sub>2)</sub> with the active ingredient AMSC (AMSC/Alg-H) and to evaluate its in vitro effectiveness for wound closure.</p><p><strong>Methods: </strong>This hydrogel preparation involved combining sterile solutions of AMSC, sodium alginate, and CaCl<sub>2,</sub> followed by rinsing with serum-free media. The cells were cultured in different 6-well plates, namely sodium alginate, calcium chloride, AMSC, Alg-H, and AMSC/Alg-H, in complete medium with 10% FBS. The hydrogel was successfully formulated, as confirmed by characterization techniques including Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC), Cytotoxicity Studies, TGF-β1 Level Measurement by ELISA, and Cell Scratch Wound Assay.</p><p><strong>Results: </strong>Cryo-EM characterization of the Alg-H preparation successfully demonstrated the encapsulation of MSCs. FTIR and DSC analyses indicate that crosslinking transpires in Alg-H encapsulating AMSC. The AMSC/Alg-H preparation showed no significant difference in toxicity compared to HaCaT cells (p < 0.05), indicating it was not toxic to HaCaT cells. Furthermore, in the scratch wound assay test at 24 hours, the AMSC/Alg-H preparation achieved 100% wound closure, outperforming both AMSC and Alg-H alone. In vitro assessment revealed that AMSC/Alg-H significantly enhanced key wound healing processes, including cell proliferation and migration, compared to Alg-H.</p><p><strong>Conclusion: </strong>Our study demonstrated the promising potential of AMSC/Alg-H as an enhanced regenerative therapy for in vitro wound healing. AMSC/Alg-H was able to maintain the viability of AMSCs and facilitate the formation of tissue-like structures.</p>","PeriodicalId":44934,"journal":{"name":"Stem Cells and Cloning-Advances and Applications","volume":"18 ","pages":"1-13"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730520/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells and Cloning-Advances and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/SCCAA.S493125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Chronic wounds are a common clinical problem that necessitate the exploration of novel regenerative therapies. We report a method to investigate the in vitro wound healing capacity of an innovative biomaterial, which is based on amniotic membrane-derived stem cells (AMSCs) embedded in an alginate hydrogel matrix. The aim of this study was to prepare an sodium alginate-based hydrogel, cross-linked calcium chloride (CaCl2) with the active ingredient AMSC (AMSC/Alg-H) and to evaluate its in vitro effectiveness for wound closure.

Methods: This hydrogel preparation involved combining sterile solutions of AMSC, sodium alginate, and CaCl2, followed by rinsing with serum-free media. The cells were cultured in different 6-well plates, namely sodium alginate, calcium chloride, AMSC, Alg-H, and AMSC/Alg-H, in complete medium with 10% FBS. The hydrogel was successfully formulated, as confirmed by characterization techniques including Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC), Cytotoxicity Studies, TGF-β1 Level Measurement by ELISA, and Cell Scratch Wound Assay.

Results: Cryo-EM characterization of the Alg-H preparation successfully demonstrated the encapsulation of MSCs. FTIR and DSC analyses indicate that crosslinking transpires in Alg-H encapsulating AMSC. The AMSC/Alg-H preparation showed no significant difference in toxicity compared to HaCaT cells (p < 0.05), indicating it was not toxic to HaCaT cells. Furthermore, in the scratch wound assay test at 24 hours, the AMSC/Alg-H preparation achieved 100% wound closure, outperforming both AMSC and Alg-H alone. In vitro assessment revealed that AMSC/Alg-H significantly enhanced key wound healing processes, including cell proliferation and migration, compared to Alg-H.

Conclusion: Our study demonstrated the promising potential of AMSC/Alg-H as an enhanced regenerative therapy for in vitro wound healing. AMSC/Alg-H was able to maintain the viability of AMSCs and facilitate the formation of tissue-like structures.

海藻酸盐基水凝胶与羊膜干细胞用于伤口敷料。
目的:慢性创伤是常见的临床问题,需要探索新的再生治疗方法。我们报告了一种研究创新生物材料体外伤口愈合能力的方法,该材料是基于嵌入藻酸盐水凝胶基质的羊膜干细胞(AMSCs)。本研究的目的是制备一种含有活性成分AMSC (AMSC/Alg-H)的海藻酸钠基交联氯化钙(CaCl2)水凝胶,并评估其体外伤口愈合效果。方法:将无菌的AMSC、海藻酸钠和CaCl2溶液混合,然后用无血清培养基冲洗。在含10%胎牛血清的完整培养基中,将细胞培养于海藻酸钠、氯化钙、AMSC、Alg-H和AMSC/Alg-H等不同的6孔板中。通过扫描电镜(SEM)、傅里叶变换红外(FTIR)光谱、差示扫描量热法(DSC)、细胞毒性研究、ELISA法测定TGF-β1水平和细胞划伤实验等表征技术证实了水凝胶的成功配制。结果:Alg-H的低温电镜表征成功地证明了MSCs的包封。FTIR和DSC分析表明,在Alg-H封装的AMSC中发生了交联。与HaCaT细胞相比,AMSC/Alg-H制剂的毒性差异无统计学意义(p < 0.05),表明其对HaCaT细胞无毒性。此外,在24小时的划痕实验中,AMSC/Alg-H制剂实现了100%的伤口闭合,优于AMSC和Alg-H单独使用。体外评估显示,与Alg-H相比,AMSC/Alg-H显著增强了关键的伤口愈合过程,包括细胞增殖和迁移。结论:我们的研究证明了AMSC/Alg-H作为体外伤口愈合的增强再生疗法的潜力。AMSC/Alg-H能够维持AMSC的活力,促进组织样结构的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
10
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信