Seungwoo Kim, Ho-Sung Park, Do Young Kim, Hyunhi Joh, Jiseok Oh, Dong Ho Kim, Min Ju Kang, Chul Hee Choi, Hak Joong Kim
{"title":"Siderophore-based targeted antibody recruitment for promoting immune responses towards Gram-negative pathogens.","authors":"Seungwoo Kim, Ho-Sung Park, Do Young Kim, Hyunhi Joh, Jiseok Oh, Dong Ho Kim, Min Ju Kang, Chul Hee Choi, Hak Joong Kim","doi":"10.1039/d4cb00293h","DOIUrl":null,"url":null,"abstract":"<p><p>Antibody-recruiting molecules (ARMs) have emerged as a promising strategy for enhancing immune responses against pathogens and cancer cells. In this study, we developed a novel class of antibacterial ARMs utilizing siderophores, small iron-chelating compounds, as targeting motifs. Siderophores naturally exhibit high specificity for bacterial pathogens due to their role in iron acquisition, making them ideal candidates for selective targeting. We identified a potent ARM, GNP3, comprising MECAM, a siderophore mimetic, and 2,4-dinitrophenyl (DNP), a motif recognized by endogenous antibodies, connected <i>via</i> a flexible linker. GNP3 binds simultaneously to both anti-DNP antibody and the siderophore receptor, FepA, facilitating the targeted deposition of antibodies on the surface of FepA-expressing bacterial cells, such as <i>Escherichia coli</i> and <i>Pseudomonas aeruginosa</i>. This GNP3-induced opsonization promoted robust immune responses, including complement-dependent cytotoxicity (CDC) in the presence of serum and macrophage-mediated phagocytosis. Moreover, GNP3 effectively triggered CDC activity against serum-resistant uropathogenic <i>E. coli</i>. The results suggest that siderophore-based ARMs, by harnessing the immune defense system, represent a promising complementary approach to traditional antibiotics for overcoming recalcitrant bacterial infections.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740091/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4cb00293h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibody-recruiting molecules (ARMs) have emerged as a promising strategy for enhancing immune responses against pathogens and cancer cells. In this study, we developed a novel class of antibacterial ARMs utilizing siderophores, small iron-chelating compounds, as targeting motifs. Siderophores naturally exhibit high specificity for bacterial pathogens due to their role in iron acquisition, making them ideal candidates for selective targeting. We identified a potent ARM, GNP3, comprising MECAM, a siderophore mimetic, and 2,4-dinitrophenyl (DNP), a motif recognized by endogenous antibodies, connected via a flexible linker. GNP3 binds simultaneously to both anti-DNP antibody and the siderophore receptor, FepA, facilitating the targeted deposition of antibodies on the surface of FepA-expressing bacterial cells, such as Escherichia coli and Pseudomonas aeruginosa. This GNP3-induced opsonization promoted robust immune responses, including complement-dependent cytotoxicity (CDC) in the presence of serum and macrophage-mediated phagocytosis. Moreover, GNP3 effectively triggered CDC activity against serum-resistant uropathogenic E. coli. The results suggest that siderophore-based ARMs, by harnessing the immune defense system, represent a promising complementary approach to traditional antibiotics for overcoming recalcitrant bacterial infections.