{"title":"Bayesian Modeling of Cancer Outcomes Using Genetic Variables Assisted by Pathological Imaging Data.","authors":"Yunju Im, Rong Li, Shuangge Ma","doi":"10.1002/sim.10350","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing maturity of genetic profiling, an essential and routine task in cancer research is to model disease outcomes/phenotypes using genetic variables. Many methods have been successfully developed. However, oftentimes, empirical performance is unsatisfactory because of a \"lack of information.\" In cancer research and clinical practice, a source of information that is broadly available and highly cost-effective comes from pathological images, which are routinely collected for definitive diagnosis and staging. In this article, we consider a Bayesian approach for selecting relevant genetic variables and modeling their relationships with a cancer outcome/phenotype. We propose borrowing information from (manually curated, low-dimensional) pathological imaging features via reinforcing the same selection results for the cancer outcome and imaging features. We further develop a weighting strategy to accommodate the scenario where information borrowing may not be equally effective for all subjects. Computation is carefully examined. Simulations demonstrate competitive performance of the proposed approach. We analyze TCGA (The Cancer Genome Atlas) LUAD (lung adenocarcinoma) data, with overall survival and gene expressions being the outcome and genetic variables, respectively. Findings different from the alternatives and with sound properties are made.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 3-4","pages":"e10350"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774474/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10350","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing maturity of genetic profiling, an essential and routine task in cancer research is to model disease outcomes/phenotypes using genetic variables. Many methods have been successfully developed. However, oftentimes, empirical performance is unsatisfactory because of a "lack of information." In cancer research and clinical practice, a source of information that is broadly available and highly cost-effective comes from pathological images, which are routinely collected for definitive diagnosis and staging. In this article, we consider a Bayesian approach for selecting relevant genetic variables and modeling their relationships with a cancer outcome/phenotype. We propose borrowing information from (manually curated, low-dimensional) pathological imaging features via reinforcing the same selection results for the cancer outcome and imaging features. We further develop a weighting strategy to accommodate the scenario where information borrowing may not be equally effective for all subjects. Computation is carefully examined. Simulations demonstrate competitive performance of the proposed approach. We analyze TCGA (The Cancer Genome Atlas) LUAD (lung adenocarcinoma) data, with overall survival and gene expressions being the outcome and genetic variables, respectively. Findings different from the alternatives and with sound properties are made.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.