Caloric restriction exacerbates renal post-ischemic injury and fibrosis by modulating mTORC1 signaling and autophagy.

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lang Shi, Hongchu Zha, Juan Zhao, Haiqian An, Hua Huang, Yao Xia, Ziyu Yan, Zhixia Song, Jiefu Zhu
{"title":"Caloric restriction exacerbates renal post-ischemic injury and fibrosis by modulating mTORC1 signaling and autophagy.","authors":"Lang Shi, Hongchu Zha, Juan Zhao, Haiqian An, Hua Huang, Yao Xia, Ziyu Yan, Zhixia Song, Jiefu Zhu","doi":"10.1016/j.redox.2025.103500","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study investigates the effects of caloric restriction (CR) on renal injury and fibrosis following ischemia-reperfusion injury (IRI), with a focus on the roles of the mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling and autophagy.</p><p><strong>Methods: </strong>A mouse model of unilateral IRI with or without CR was used. Renal function was assessed through serum creatinine and blood urea nitrogen levels, while histological analysis and molecular assays evaluated tubular injury, fibrosis, mTORC1 signaling, and autophagy activation. Inducible renal tubule-specific Atg7 knockout mice and autophagy inhibitor 3-MA were used to elucidate autophagy's role in renal outcomes.</p><p><strong>Results: </strong>CR exacerbated renal dysfunction, tubular injury, and fibrosis in IRI mice, associated with suppressed mTORC1 signaling and enhanced autophagy. Rapamycin, an mTORC1 inhibitor, mimicked the effects of CR, further supporting the involvement of mTORC1-autophagy pathway. Tubule-specific Atg7 knockout and autophagy inhibitor 3-MA mitigated these effects, indicating a central role for autophagy in CR-induced renal damage. Glucose supplementation, but not branched-chain amino acids (BCAAs), alleviated CR-induced renal fibrosis and dysfunction by restoring mTORC1 activation. Finally, we identified leucyl-tRNA synthetase 1 (LARS1) as a key mediator of nutrient sensing and mTORC1 activation, demonstrating its glucose dependency under CR conditions.</p><p><strong>Conclusion: </strong>Our study provides novel insights into the interplay between nutrient metabolism, mTORC1 signaling, and autophagy in IRI-induced renal damages, offering potential therapeutic targets for mitigating CR-associated complications after renal IRI.</p>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"80 ","pages":"103500"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.redox.2025.103500","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study investigates the effects of caloric restriction (CR) on renal injury and fibrosis following ischemia-reperfusion injury (IRI), with a focus on the roles of the mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling and autophagy.

Methods: A mouse model of unilateral IRI with or without CR was used. Renal function was assessed through serum creatinine and blood urea nitrogen levels, while histological analysis and molecular assays evaluated tubular injury, fibrosis, mTORC1 signaling, and autophagy activation. Inducible renal tubule-specific Atg7 knockout mice and autophagy inhibitor 3-MA were used to elucidate autophagy's role in renal outcomes.

Results: CR exacerbated renal dysfunction, tubular injury, and fibrosis in IRI mice, associated with suppressed mTORC1 signaling and enhanced autophagy. Rapamycin, an mTORC1 inhibitor, mimicked the effects of CR, further supporting the involvement of mTORC1-autophagy pathway. Tubule-specific Atg7 knockout and autophagy inhibitor 3-MA mitigated these effects, indicating a central role for autophagy in CR-induced renal damage. Glucose supplementation, but not branched-chain amino acids (BCAAs), alleviated CR-induced renal fibrosis and dysfunction by restoring mTORC1 activation. Finally, we identified leucyl-tRNA synthetase 1 (LARS1) as a key mediator of nutrient sensing and mTORC1 activation, demonstrating its glucose dependency under CR conditions.

Conclusion: Our study provides novel insights into the interplay between nutrient metabolism, mTORC1 signaling, and autophagy in IRI-induced renal damages, offering potential therapeutic targets for mitigating CR-associated complications after renal IRI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信