Automated system for diagnosing pulmonary fibrosis using crackle analysis in recorded lung sounds based on iterative envelope mean fractal dimension filter.
Ravi Pal, Anna Barney, Giacomo Sgalla, Simon L F Walsh, Nicola Sverzellati, Sophie Fletcher, Stefania Cerri, Maxime Cannesson, Luca Richeldi
{"title":"Automated system for diagnosing pulmonary fibrosis using crackle analysis in recorded lung sounds based on iterative envelope mean fractal dimension filter.","authors":"Ravi Pal, Anna Barney, Giacomo Sgalla, Simon L F Walsh, Nicola Sverzellati, Sophie Fletcher, Stefania Cerri, Maxime Cannesson, Luca Richeldi","doi":"10.1088/1361-6579/ada9c0","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with pulmonary fibrosis (PF) often experience long waits before getting a correct diagnosis, and this delay in reaching specialized care is associated with increased mortality, regardless of the severity of the disease. Early diagnosis and timely treatment of PF can potentially extend life expectancy and maintain a better quality of life. Crackles present in the recorded lung sounds may be crucial for the early diagnosis of PF. This paper describes an automated system for differentiating lung sounds related to PF from other pathological lung conditions using the average number of crackles per breath cycle (NOC/BC). The system is divided into four main parts: (1) pre-processing, (2) separation of crackles from normal breath sounds using the iterative envelope mean fractal dimension (IEM-FD) filter, (3) crackle verification and counting, and (4) estimating NOC/BC. The system was tested on a dataset consisting of 48 (24 fibrotic and 24 non-fibrotic) subjects and the results were compared with an assessment by two expert respiratory physicians. The set of HRCT images, reviewed by two expert radiologists for the presence or absence of pulmonary fibrosis, was used as the ground truth for evaluating the PF and non-PF classification performance of the system. The overall performance of the automatic classifier based on receiver operating curve-derived cut-off value for average NOC/BC of 18.65 (AUC=0.845, 95 % CI 0.739-0.952, p<0.001; sensitivity=91.7 %; specificity=59.3 %) compares favorably with the averaged performance of the physicians (sensitivity=83.3 %; specificity=56.25 %). Although radiological assessment should remain the gold standard for diagnosis of fibrotic interstitial lung disease, the automatic classification system has strong potential for diagnostic support, especially in assisting general practitioners in the auscultatory assessment of lung sounds to prompt further diagnostic work up of patients with suspect of interstitial lung disease.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ada9c0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Patients with pulmonary fibrosis (PF) often experience long waits before getting a correct diagnosis, and this delay in reaching specialized care is associated with increased mortality, regardless of the severity of the disease. Early diagnosis and timely treatment of PF can potentially extend life expectancy and maintain a better quality of life. Crackles present in the recorded lung sounds may be crucial for the early diagnosis of PF. This paper describes an automated system for differentiating lung sounds related to PF from other pathological lung conditions using the average number of crackles per breath cycle (NOC/BC). The system is divided into four main parts: (1) pre-processing, (2) separation of crackles from normal breath sounds using the iterative envelope mean fractal dimension (IEM-FD) filter, (3) crackle verification and counting, and (4) estimating NOC/BC. The system was tested on a dataset consisting of 48 (24 fibrotic and 24 non-fibrotic) subjects and the results were compared with an assessment by two expert respiratory physicians. The set of HRCT images, reviewed by two expert radiologists for the presence or absence of pulmonary fibrosis, was used as the ground truth for evaluating the PF and non-PF classification performance of the system. The overall performance of the automatic classifier based on receiver operating curve-derived cut-off value for average NOC/BC of 18.65 (AUC=0.845, 95 % CI 0.739-0.952, p<0.001; sensitivity=91.7 %; specificity=59.3 %) compares favorably with the averaged performance of the physicians (sensitivity=83.3 %; specificity=56.25 %). Although radiological assessment should remain the gold standard for diagnosis of fibrotic interstitial lung disease, the automatic classification system has strong potential for diagnostic support, especially in assisting general practitioners in the auscultatory assessment of lung sounds to prompt further diagnostic work up of patients with suspect of interstitial lung disease.
肺纤维化(PF)患者在得到正确诊断之前往往要等待很长时间,而无论疾病的严重程度如何,这种获得专业护理的延迟与死亡率增加有关。PF的早期诊断和及时治疗可以潜在地延长预期寿命并保持更好的生活质量。记录的肺音中出现的裂纹可能对PF的早期诊断至关重要。本文描述了一种自动化系统,该系统使用每个呼吸周期的平均裂纹数(NOC/BC)来区分与PF相关的肺音和其他病理肺部疾病。该系统分为四个主要部分:(1)预处理,(2)使用迭代包络平均分形维数(IEM-FD)滤波器从正常呼吸声中分离裂纹,(3)裂纹验证和计数,(4)估计NOC/BC。该系统在一个由48名受试者(24名纤维化和24名非纤维化)组成的数据集上进行了测试,并将结果与两位呼吸内科专家的评估进行了比较。HRCT图像集由两名放射科专家审查是否存在肺纤维化,作为评估系统的PF和非PF分类性能的基本事实。基于接收者工作曲线衍生的截止值的自动分类器的总体性能为平均NOC/BC为18.65 (AUC=0.845, 95% CI 0.739-0.952, p
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.