Automated system for diagnosing pulmonary fibrosis using crackle analysis in recorded lung sounds based on iterative envelope mean fractal dimension filter.

IF 2.3 4区 医学 Q3 BIOPHYSICS
Ravi Pal, Anna Barney, Giacomo Sgalla, Simon L F Walsh, Nicola Sverzellati, Sophie Fletcher, Stefania Cerri, Maxime Cannesson, Luca Richeldi
{"title":"Automated system for diagnosing pulmonary fibrosis using crackle analysis in recorded lung sounds based on iterative envelope mean fractal dimension filter.","authors":"Ravi Pal, Anna Barney, Giacomo Sgalla, Simon L F Walsh, Nicola Sverzellati, Sophie Fletcher, Stefania Cerri, Maxime Cannesson, Luca Richeldi","doi":"10.1088/1361-6579/ada9c0","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with pulmonary fibrosis (PF) often experience long waits before getting a correct diagnosis, and this delay in reaching specialized care is associated with increased mortality, regardless of the severity of the disease. Early diagnosis and timely treatment of PF can potentially extend life expectancy and maintain a better quality of life. Crackles present in the recorded lung sounds may be crucial for the early diagnosis of PF. This paper describes an automated system for differentiating lung sounds related to PF from other pathological lung conditions using the average number of crackles per breath cycle (NOC/BC). The system is divided into four main parts: (1) pre-processing, (2) separation of crackles from normal breath sounds using the iterative envelope mean fractal dimension (IEM-FD) filter, (3) crackle verification and counting, and (4) estimating NOC/BC. The system was tested on a dataset consisting of 48 (24 fibrotic and 24 non-fibrotic) subjects and the results were compared with an assessment by two expert respiratory physicians. The set of HRCT images, reviewed by two expert radiologists for the presence or absence of pulmonary fibrosis, was used as the ground truth for evaluating the PF and non-PF classification performance of the system. The overall performance of the automatic classifier based on receiver operating curve-derived cut-off value for average NOC/BC of 18.65 (AUC=0.845, 95 % CI 0.739-0.952, p<0.001; sensitivity=91.7 %; specificity=59.3 %) compares favorably with the averaged performance of the physicians (sensitivity=83.3 %; specificity=56.25 %). Although radiological assessment should remain the gold standard for diagnosis of fibrotic interstitial lung disease, the automatic classification system has strong potential for diagnostic support, especially in assisting general practitioners in the auscultatory assessment of lung sounds to prompt further diagnostic work up of patients with suspect of interstitial lung disease.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ada9c0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Patients with pulmonary fibrosis (PF) often experience long waits before getting a correct diagnosis, and this delay in reaching specialized care is associated with increased mortality, regardless of the severity of the disease. Early diagnosis and timely treatment of PF can potentially extend life expectancy and maintain a better quality of life. Crackles present in the recorded lung sounds may be crucial for the early diagnosis of PF. This paper describes an automated system for differentiating lung sounds related to PF from other pathological lung conditions using the average number of crackles per breath cycle (NOC/BC). The system is divided into four main parts: (1) pre-processing, (2) separation of crackles from normal breath sounds using the iterative envelope mean fractal dimension (IEM-FD) filter, (3) crackle verification and counting, and (4) estimating NOC/BC. The system was tested on a dataset consisting of 48 (24 fibrotic and 24 non-fibrotic) subjects and the results were compared with an assessment by two expert respiratory physicians. The set of HRCT images, reviewed by two expert radiologists for the presence or absence of pulmonary fibrosis, was used as the ground truth for evaluating the PF and non-PF classification performance of the system. The overall performance of the automatic classifier based on receiver operating curve-derived cut-off value for average NOC/BC of 18.65 (AUC=0.845, 95 % CI 0.739-0.952, p<0.001; sensitivity=91.7 %; specificity=59.3 %) compares favorably with the averaged performance of the physicians (sensitivity=83.3 %; specificity=56.25 %). Although radiological assessment should remain the gold standard for diagnosis of fibrotic interstitial lung disease, the automatic classification system has strong potential for diagnostic support, especially in assisting general practitioners in the auscultatory assessment of lung sounds to prompt further diagnostic work up of patients with suspect of interstitial lung disease.

基于迭代包络平均分形维数滤波的肺音裂纹分析自动诊断系统。
肺纤维化(PF)患者在得到正确诊断之前往往要等待很长时间,而无论疾病的严重程度如何,这种获得专业护理的延迟与死亡率增加有关。PF的早期诊断和及时治疗可以潜在地延长预期寿命并保持更好的生活质量。记录的肺音中出现的裂纹可能对PF的早期诊断至关重要。本文描述了一种自动化系统,该系统使用每个呼吸周期的平均裂纹数(NOC/BC)来区分与PF相关的肺音和其他病理肺部疾病。该系统分为四个主要部分:(1)预处理,(2)使用迭代包络平均分形维数(IEM-FD)滤波器从正常呼吸声中分离裂纹,(3)裂纹验证和计数,(4)估计NOC/BC。该系统在一个由48名受试者(24名纤维化和24名非纤维化)组成的数据集上进行了测试,并将结果与两位呼吸内科专家的评估进行了比较。HRCT图像集由两名放射科专家审查是否存在肺纤维化,作为评估系统的PF和非PF分类性能的基本事实。基于接收者工作曲线衍生的截止值的自动分类器的总体性能为平均NOC/BC为18.65 (AUC=0.845, 95% CI 0.739-0.952, p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological measurement
Physiological measurement 生物-工程:生物医学
CiteScore
5.50
自引率
9.40%
发文量
124
审稿时长
3 months
期刊介绍: Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation. Papers are published on topics including: applied physiology in illness and health electrical bioimpedance, optical and acoustic measurement techniques advanced methods of time series and other data analysis biomedical and clinical engineering in-patient and ambulatory monitoring point-of-care technologies novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems. measurements in molecular, cellular and organ physiology and electrophysiology physiological modeling and simulation novel biomedical sensors, instruments, devices and systems measurement standards and guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信