Prediction of post-treatment recurrence in early-stage breast cancer using deep-learning with mid-infrared chemical histopathological imaging.

IF 6.8 1区 医学 Q1 ONCOLOGY
Abigail Keogan, Thi Nguyet Que Nguyen, Pascaline Bouzy, Nicholas Stone, Karin Jirstrom, Arman Rahman, William M Gallagher, Aidan D Meade
{"title":"Prediction of post-treatment recurrence in early-stage breast cancer using deep-learning with mid-infrared chemical histopathological imaging.","authors":"Abigail Keogan, Thi Nguyet Que Nguyen, Pascaline Bouzy, Nicholas Stone, Karin Jirstrom, Arman Rahman, William M Gallagher, Aidan D Meade","doi":"10.1038/s41698-024-00772-x","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting long-term recurrence of disease in breast cancer (BC) patients remains a significant challenge for patients with early stage disease who are at low to intermediate risk of relapse as determined using current clinical tools. Prognostic assays which utilize bulk transcriptomics ignore the spatial context of the cellular material and are, therefore, of limited value in the development of mechanistic models. In this study, Fourier-transform infrared (FTIR) chemical images of BC tissue were used to train deep learning models to predict future disease recurrence. A number of deep learning models were employed, with champion models employing two-dimensional and two-dimensional-separable convolutional networks found to have predictive performance of a ROC AUC of approximately 0.64, which compares well to other clinically used prognostic assays in this space. All-digital chemical imaging may therefore provide a label-free platform for histopathological prognosis in breast cancer, opening new horizons for future deployment of these technologies.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"18"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-024-00772-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting long-term recurrence of disease in breast cancer (BC) patients remains a significant challenge for patients with early stage disease who are at low to intermediate risk of relapse as determined using current clinical tools. Prognostic assays which utilize bulk transcriptomics ignore the spatial context of the cellular material and are, therefore, of limited value in the development of mechanistic models. In this study, Fourier-transform infrared (FTIR) chemical images of BC tissue were used to train deep learning models to predict future disease recurrence. A number of deep learning models were employed, with champion models employing two-dimensional and two-dimensional-separable convolutional networks found to have predictive performance of a ROC AUC of approximately 0.64, which compares well to other clinically used prognostic assays in this space. All-digital chemical imaging may therefore provide a label-free platform for histopathological prognosis in breast cancer, opening new horizons for future deployment of these technologies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信