Abigail Keogan, Thi Nguyet Que Nguyen, Pascaline Bouzy, Nicholas Stone, Karin Jirstrom, Arman Rahman, William M Gallagher, Aidan D Meade
{"title":"Prediction of post-treatment recurrence in early-stage breast cancer using deep-learning with mid-infrared chemical histopathological imaging.","authors":"Abigail Keogan, Thi Nguyet Que Nguyen, Pascaline Bouzy, Nicholas Stone, Karin Jirstrom, Arman Rahman, William M Gallagher, Aidan D Meade","doi":"10.1038/s41698-024-00772-x","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting long-term recurrence of disease in breast cancer (BC) patients remains a significant challenge for patients with early stage disease who are at low to intermediate risk of relapse as determined using current clinical tools. Prognostic assays which utilize bulk transcriptomics ignore the spatial context of the cellular material and are, therefore, of limited value in the development of mechanistic models. In this study, Fourier-transform infrared (FTIR) chemical images of BC tissue were used to train deep learning models to predict future disease recurrence. A number of deep learning models were employed, with champion models employing two-dimensional and two-dimensional-separable convolutional networks found to have predictive performance of a ROC AUC of approximately 0.64, which compares well to other clinically used prognostic assays in this space. All-digital chemical imaging may therefore provide a label-free platform for histopathological prognosis in breast cancer, opening new horizons for future deployment of these technologies.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"18"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-024-00772-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting long-term recurrence of disease in breast cancer (BC) patients remains a significant challenge for patients with early stage disease who are at low to intermediate risk of relapse as determined using current clinical tools. Prognostic assays which utilize bulk transcriptomics ignore the spatial context of the cellular material and are, therefore, of limited value in the development of mechanistic models. In this study, Fourier-transform infrared (FTIR) chemical images of BC tissue were used to train deep learning models to predict future disease recurrence. A number of deep learning models were employed, with champion models employing two-dimensional and two-dimensional-separable convolutional networks found to have predictive performance of a ROC AUC of approximately 0.64, which compares well to other clinically used prognostic assays in this space. All-digital chemical imaging may therefore provide a label-free platform for histopathological prognosis in breast cancer, opening new horizons for future deployment of these technologies.
期刊介绍:
Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.