Integrins identified as potential prognostic markers in osteosarcoma through multi-omics and multi-dataset analysis.

IF 6.8 1区 医学 Q1 ONCOLOGY
Lei Cui, Shuai Zhao, Hai Long Teng, Biao Yang, Qian Liu, An Qin
{"title":"Integrins identified as potential prognostic markers in osteosarcoma through multi-omics and multi-dataset analysis.","authors":"Lei Cui, Shuai Zhao, Hai Long Teng, Biao Yang, Qian Liu, An Qin","doi":"10.1038/s41698-024-00794-5","DOIUrl":null,"url":null,"abstract":"<p><p>Osteosarcoma represents 20% of primary malignant bone tumors globally. Assessing its prognosis is challenging due to the complex roles of integrins in tumor development and metastasis. This study utilized 209,268 osteosarcoma cells from the GEO database to identify integrin-associated genes using advanced analysis methods. A novel machine learning framework combining 10 algorithms was developed to construct an Integrin-related Signature (IRS), which demonstrated robust predictive power across multiple datasets. The IRS's utility in predicting overall survival was confirmed using data from The Cancer Genome Atlas, underscoring its potential in personalized cancer management.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"19"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742673/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-024-00794-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteosarcoma represents 20% of primary malignant bone tumors globally. Assessing its prognosis is challenging due to the complex roles of integrins in tumor development and metastasis. This study utilized 209,268 osteosarcoma cells from the GEO database to identify integrin-associated genes using advanced analysis methods. A novel machine learning framework combining 10 algorithms was developed to construct an Integrin-related Signature (IRS), which demonstrated robust predictive power across multiple datasets. The IRS's utility in predicting overall survival was confirmed using data from The Cancer Genome Atlas, underscoring its potential in personalized cancer management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信