A multi-modal deep learning model for prediction of Ki-67 for meningiomas using pretreatment MR images.

IF 6.8 1区 医学 Q1 ONCOLOGY
Chaoyue Chen, Yanjie Zhao, Linrui Cai, Haoze Jiang, Yuen Teng, Yang Zhang, Shuangyi Zhang, Junkai Zheng, Fumin Zhao, Zhouyang Huang, Xiaolong Xu, Xin Zan, Jianfeng Xu, Lei Zhang, Jianguo Xu
{"title":"A multi-modal deep learning model for prediction of Ki-67 for meningiomas using pretreatment MR images.","authors":"Chaoyue Chen, Yanjie Zhao, Linrui Cai, Haoze Jiang, Yuen Teng, Yang Zhang, Shuangyi Zhang, Junkai Zheng, Fumin Zhao, Zhouyang Huang, Xiaolong Xu, Xin Zan, Jianfeng Xu, Lei Zhang, Jianguo Xu","doi":"10.1038/s41698-025-00811-1","DOIUrl":null,"url":null,"abstract":"<p><p>This study developed and validated a deep learning network using baseline magnetic resonance imaging (MRI) to predict Ki-67 status in meningioma patients. A total of 1239 patients were retrospectively recruited from three hospitals between January 2010 and December 2023, forming training, internal validation, and two external validation cohorts. A representation learning framework was utilized for modeling, and performance was assessed against existing methods. Furthermore, Kaplan-Meier survival analysis was conducted to investigate whether the model could be used for tumor growth prediction. The model achieved superior results, with areas under the curve (AUCs) of 0.797 for internal testing and 0.808 for generalization, alongside 0.756 and 0.727 for 3- and 5-year tumor growth predictions, respectively. The prediction was significantly associated with the growth of asymptomatic small meningiomas. Overall, the model provides an effective tool for early prediction of Ki-67 and tumor volume growth, aiding in individualized patient management.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"21"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-025-00811-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study developed and validated a deep learning network using baseline magnetic resonance imaging (MRI) to predict Ki-67 status in meningioma patients. A total of 1239 patients were retrospectively recruited from three hospitals between January 2010 and December 2023, forming training, internal validation, and two external validation cohorts. A representation learning framework was utilized for modeling, and performance was assessed against existing methods. Furthermore, Kaplan-Meier survival analysis was conducted to investigate whether the model could be used for tumor growth prediction. The model achieved superior results, with areas under the curve (AUCs) of 0.797 for internal testing and 0.808 for generalization, alongside 0.756 and 0.727 for 3- and 5-year tumor growth predictions, respectively. The prediction was significantly associated with the growth of asymptomatic small meningiomas. Overall, the model provides an effective tool for early prediction of Ki-67 and tumor volume growth, aiding in individualized patient management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信