Nathan M Kendsersky, Michal Odrobina, Nathaniel W Mabe, Alvin Farrel, Liron Grossmann, Matthew Tsang, David Groff, Adam J Wolpaw, Alaa Narch, Francesca Zammarchi, Patrick H van Berkel, Chi V Dang, Yaël P Mossé, Kimberly Stegmaier, John M Maris
{"title":"Lineage dependence of the neuroblastoma surfaceome defines tumor cell state-dependent and -independent immunotherapeutic targets.","authors":"Nathan M Kendsersky, Michal Odrobina, Nathaniel W Mabe, Alvin Farrel, Liron Grossmann, Matthew Tsang, David Groff, Adam J Wolpaw, Alaa Narch, Francesca Zammarchi, Patrick H van Berkel, Chi V Dang, Yaël P Mossé, Kimberly Stegmaier, John M Maris","doi":"10.1093/neuonc/noaf012","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)-like cells and therapy-resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state-specific targetable cell surface proteins.</p><p><strong>Methods: </strong>We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES-dominant to define subtype-specific and pan-neuroblastoma gene sets. Targets were validated with ChIP-sequencing, immunoblotting, and flow cytometry in neuroblastoma cell lines and isogenic ADRN-to-MES transition cell line models. Finally, we evaluated the activity of MES-specific agents in vivo and in vitro.</p><p><strong>Results: </strong>Most immunotherapeutic targets being developed for neuroblastoma showed significantly higher expression in the ADRN subtype with limited expression in MES-like tumor cells. In contrast, CD276 (B7-H3) and L1CAM maintained expression across both ADRN and MES states. We identified several receptor tyrosine kinases (RTKs) enriched in MES-dominant samples and showed that AXL targeting with ADCT-601 was potently cytotoxic in MES-dominant cell lines and showed specific antitumor activity in a MES cell line-derived xenograft.</p><p><strong>Conclusions: </strong>Immunotherapeutic strategies for neuroblastoma must address the potential of epigenetic downregulation of antigen density as a mechanism for immune evasion. We identified several RTKs as candidate MES-specific immunotherapeutic target proteins for the elimination of therapy-resistant cells. We hypothesize that the phenomena of immune escape will be less likely when targeting pan-neuroblastoma cell surface proteins such as B7-H3 and L1CAM, and/or dual targeting strategies that consider both the ADRN and MES cell states.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":"1372-1384"},"PeriodicalIF":16.4000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187457/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noaf012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)-like cells and therapy-resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state-specific targetable cell surface proteins.
Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES-dominant to define subtype-specific and pan-neuroblastoma gene sets. Targets were validated with ChIP-sequencing, immunoblotting, and flow cytometry in neuroblastoma cell lines and isogenic ADRN-to-MES transition cell line models. Finally, we evaluated the activity of MES-specific agents in vivo and in vitro.
Results: Most immunotherapeutic targets being developed for neuroblastoma showed significantly higher expression in the ADRN subtype with limited expression in MES-like tumor cells. In contrast, CD276 (B7-H3) and L1CAM maintained expression across both ADRN and MES states. We identified several receptor tyrosine kinases (RTKs) enriched in MES-dominant samples and showed that AXL targeting with ADCT-601 was potently cytotoxic in MES-dominant cell lines and showed specific antitumor activity in a MES cell line-derived xenograft.
Conclusions: Immunotherapeutic strategies for neuroblastoma must address the potential of epigenetic downregulation of antigen density as a mechanism for immune evasion. We identified several RTKs as candidate MES-specific immunotherapeutic target proteins for the elimination of therapy-resistant cells. We hypothesize that the phenomena of immune escape will be less likely when targeting pan-neuroblastoma cell surface proteins such as B7-H3 and L1CAM, and/or dual targeting strategies that consider both the ADRN and MES cell states.
期刊介绍:
Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field.
The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.