Keerthana Shankar, Isabelle Zingler-Hoslet, Diana M Tabima, Seth Zima, Lei Shi, Kirstan Gimse, Matthew H Forsberg, Varun Katta, Sage Z Davis, Daniel Maldonado, Brittany E Russell, Muhammed Murtaza, Shengdar Q Tsai, Jose M Ayuso, Christian M Capitini, Krishanu Saha
{"title":"Virus-free CRISPR knockin of a chimeric antigen receptor into KLRC1 generates potent GD2-specific natural killer cells.","authors":"Keerthana Shankar, Isabelle Zingler-Hoslet, Diana M Tabima, Seth Zima, Lei Shi, Kirstan Gimse, Matthew H Forsberg, Varun Katta, Sage Z Davis, Daniel Maldonado, Brittany E Russell, Muhammed Murtaza, Shengdar Q Tsai, Jose M Ayuso, Christian M Capitini, Krishanu Saha","doi":"10.1016/j.ymthe.2025.01.024","DOIUrl":null,"url":null,"abstract":"<p><p>Natural killer (NK) cells are an appealing off-the-shelf, allogeneic cellular therapy due to their cytotoxic profile. However, their activity against solid tumors remains suboptimal in part due to the upregulation of NK-inhibitory ligands, such as HLA-E, within the tumor microenvironment. Here, we utilize CRISPR-Cas9 to disrupt the KLRC1 gene (encoding the HLA-E-binding NKG2A receptor) and perform non-viral insertion of a GD2-targeting chimeric antigen receptor (CAR) within NK cells isolated from human peripheral blood. Genome editing with CRISPR-Cas9 ribonucleoprotein complexes yields efficient genomic disruption of the KLRC1 gene with 98% knockout efficiency and specific knockin of the GD2 CAR transgene as high as 23%, with minimal off-target activity as shown by CHANGE-seq, in-out PCR, amplicon sequencing, and long-read whole-genome sequencing. KLRC1-GD2 CAR NK cells display high viability and proliferation, as well as precise cellular targeting and potency against GD2<sup>+</sup> human tumor cells. Notably, KLRC1-GD2 CAR NK cells overcome HLA-E-based inhibition in vitro against HLA-E-expressing, GD2<sup>+</sup> melanoma cells. Using a single-step, virus-free genome editing workflow, this study demonstrates the feasibility of precisely disrupting inhibitory signaling within NK cells via CRISPR-Cas9 while expressing a CAR to generate potent allogeneic cell therapies against HLA-E<sup>+</sup> solid tumors.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.01.024","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Natural killer (NK) cells are an appealing off-the-shelf, allogeneic cellular therapy due to their cytotoxic profile. However, their activity against solid tumors remains suboptimal in part due to the upregulation of NK-inhibitory ligands, such as HLA-E, within the tumor microenvironment. Here, we utilize CRISPR-Cas9 to disrupt the KLRC1 gene (encoding the HLA-E-binding NKG2A receptor) and perform non-viral insertion of a GD2-targeting chimeric antigen receptor (CAR) within NK cells isolated from human peripheral blood. Genome editing with CRISPR-Cas9 ribonucleoprotein complexes yields efficient genomic disruption of the KLRC1 gene with 98% knockout efficiency and specific knockin of the GD2 CAR transgene as high as 23%, with minimal off-target activity as shown by CHANGE-seq, in-out PCR, amplicon sequencing, and long-read whole-genome sequencing. KLRC1-GD2 CAR NK cells display high viability and proliferation, as well as precise cellular targeting and potency against GD2+ human tumor cells. Notably, KLRC1-GD2 CAR NK cells overcome HLA-E-based inhibition in vitro against HLA-E-expressing, GD2+ melanoma cells. Using a single-step, virus-free genome editing workflow, this study demonstrates the feasibility of precisely disrupting inhibitory signaling within NK cells via CRISPR-Cas9 while expressing a CAR to generate potent allogeneic cell therapies against HLA-E+ solid tumors.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.