Gemcitabine and ATR inhibitors synergize to kill PDAC cells by blocking DNA damage response.

IF 8.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Stefanie Höfer, Larissa Frasch, Sarah Brajkovic, Kerstin Putzker, Joe Lewis, Hendrik Schürmann, Valentina Leone, Amirhossein Sakhteman, Matthew The, Florian P Bayer, Julian Müller, Firas Hamood, Jens T Siveke, Maximilian Reichert, Bernhard Kuster
{"title":"Gemcitabine and ATR inhibitors synergize to kill PDAC cells by blocking DNA damage response.","authors":"Stefanie Höfer, Larissa Frasch, Sarah Brajkovic, Kerstin Putzker, Joe Lewis, Hendrik Schürmann, Valentina Leone, Amirhossein Sakhteman, Matthew The, Florian P Bayer, Julian Müller, Firas Hamood, Jens T Siveke, Maximilian Reichert, Bernhard Kuster","doi":"10.1038/s44320-025-00085-6","DOIUrl":null,"url":null,"abstract":"<p><p>The DNA-damaging agent Gemcitabine (GEM) is a first-line treatment for pancreatic cancer, but chemoresistance is frequently observed. Several clinical trials investigate the efficacy of GEM in combination with targeted drugs, including kinase inhibitors, but the experimental evidence for such rationale is often unclear. Here, we phenotypically screened 13 human pancreatic adenocarcinoma (PDAC) cell lines against GEM in combination with 146 clinical inhibitors and observed strong synergy for the ATR kinase inhibitor Elimusertib in most cell lines. Dose-dependent phosphoproteome profiling of four ATR inhibitors following DNA damage induction by GEM revealed a strong block of the DNA damage response pathway, including phosphorylated pS468 of CHEK1, as the underlying mechanism of drug synergy. The current work provides a strong rationale for why the combination of GEM and ATR inhibition may be useful for the treatment of PDAC patients and constitutes a rich phenotypic and molecular resource for further investigating effective drug combinations.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-025-00085-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The DNA-damaging agent Gemcitabine (GEM) is a first-line treatment for pancreatic cancer, but chemoresistance is frequently observed. Several clinical trials investigate the efficacy of GEM in combination with targeted drugs, including kinase inhibitors, but the experimental evidence for such rationale is often unclear. Here, we phenotypically screened 13 human pancreatic adenocarcinoma (PDAC) cell lines against GEM in combination with 146 clinical inhibitors and observed strong synergy for the ATR kinase inhibitor Elimusertib in most cell lines. Dose-dependent phosphoproteome profiling of four ATR inhibitors following DNA damage induction by GEM revealed a strong block of the DNA damage response pathway, including phosphorylated pS468 of CHEK1, as the underlying mechanism of drug synergy. The current work provides a strong rationale for why the combination of GEM and ATR inhibition may be useful for the treatment of PDAC patients and constitutes a rich phenotypic and molecular resource for further investigating effective drug combinations.

吉西他滨和ATR抑制剂通过阻断DNA损伤反应协同杀死PDAC细胞。
dna损伤剂吉西他滨(GEM)是胰腺癌的一线治疗药物,但经常观察到化疗耐药。一些临床试验研究GEM与包括激酶抑制剂在内的靶向药物联合使用的疗效,但这种基本原理的实验证据往往不清楚。在这里,我们对13种人胰腺腺癌(PDAC)细胞系进行了表型筛选,发现GEM与146种临床抑制剂联合使用后,大多数细胞系与ATR激酶抑制剂Elimusertib有很强的协同作用。四种ATR抑制剂在GEM诱导DNA损伤后的剂量依赖性磷酸化蛋白质组分析揭示了DNA损伤反应途径的强烈阻断,包括CHEK1的磷酸化pS468,这是药物协同作用的潜在机制。目前的工作为GEM和ATR联合抑制可能对PDAC患者的治疗有用提供了强有力的理论依据,并为进一步研究有效的药物组合提供了丰富的表型和分子资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信