{"title":"Analysis of a Series of 26 Cases With Prenatal Skeletal Dysplasia via Multiplatform Genetic Detection.","authors":"Li-Min Cui, Hua-Ying Hu, Xiao-Mei Zhai, Ming-Fei Qi, Yan-Ming Liu, Cong-Ying Han, Jing Zhang, Ming Shen, Yu-Lan Xiang, Wen-Qi Chen, Kai Yang, Dong-Liang Zhang, Huan-Xia Xing","doi":"10.1002/mgg3.70062","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Skeletal dysplasia (SD) represents a series of highly heterogeneous congenital genetic diseases affecting the human skeletal system. Refined genetic diagnosis is helpful for the accurate diagnosis and prognosis evaluation of SDs.</p><p><strong>Materials and methods: </strong>In this study, we recruited 26 cases of SD and analyzed them with a designed sequential genetic detection. Chromosome karyotyping, microarray analysis (CMA), and whole exome sequencing (WES) techniques are performed as needed. Sanger sequencing and fluorescent quantitative PCR (QF-PCR) were used as validation methods.</p><p><strong>Results: </strong>A total of 16 cases (61.5%, 16/26) received positive results at various levels of testing, including one trisomy 18, four copy number variations (CNVs), and 11 sequence variations. Additionally, four novel SD-related sequence mutations were detected in this study.</p><p><strong>Conclusion: </strong>Our findings provide conclusive evidence for genetic counseling of corresponding families and expand the mutation spectrum of SD. In addition, this study demonstrates that a strategy sequentially including various genetic techniques contributes to the diagnosis of highly heterogeneous genetic disorders such as SD.</p>","PeriodicalId":18852,"journal":{"name":"Molecular Genetics & Genomic Medicine","volume":"13 1","pages":"e70062"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744476/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics & Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mgg3.70062","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Skeletal dysplasia (SD) represents a series of highly heterogeneous congenital genetic diseases affecting the human skeletal system. Refined genetic diagnosis is helpful for the accurate diagnosis and prognosis evaluation of SDs.
Materials and methods: In this study, we recruited 26 cases of SD and analyzed them with a designed sequential genetic detection. Chromosome karyotyping, microarray analysis (CMA), and whole exome sequencing (WES) techniques are performed as needed. Sanger sequencing and fluorescent quantitative PCR (QF-PCR) were used as validation methods.
Results: A total of 16 cases (61.5%, 16/26) received positive results at various levels of testing, including one trisomy 18, four copy number variations (CNVs), and 11 sequence variations. Additionally, four novel SD-related sequence mutations were detected in this study.
Conclusion: Our findings provide conclusive evidence for genetic counseling of corresponding families and expand the mutation spectrum of SD. In addition, this study demonstrates that a strategy sequentially including various genetic techniques contributes to the diagnosis of highly heterogeneous genetic disorders such as SD.
期刊介绍:
Molecular Genetics & Genomic Medicine is a peer-reviewed journal for rapid dissemination of quality research related to the dynamically developing areas of human, molecular and medical genetics. The journal publishes original research articles covering findings in phenotypic, molecular, biological, and genomic aspects of genomic variation, inherited disorders and birth defects. The broad publishing spectrum of Molecular Genetics & Genomic Medicine includes rare and common disorders from diagnosis to treatment. Examples of appropriate articles include reports of novel disease genes, functional studies of genetic variants, in-depth genotype-phenotype studies, genomic analysis of inherited disorders, molecular diagnostic methods, medical bioinformatics, ethical, legal, and social implications (ELSI), and approaches to clinical diagnosis. Molecular Genetics & Genomic Medicine provides a scientific home for next generation sequencing studies of rare and common disorders, which will make research in this fascinating area easily and rapidly accessible to the scientific community. This will serve as the basis for translating next generation sequencing studies into individualized diagnostics and therapeutics, for day-to-day medical care.
Molecular Genetics & Genomic Medicine publishes original research articles, reviews, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented.