Filling-well: An effective technique to handle incomplete well-log data for lithology classification using machine learning algorithms

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2024-12-21 DOI:10.1016/j.mex.2024.103127
Sherly Ardhya Garini , Ary Mazharuddin Shiddiqi , Widya Utama , Alif Nurdien Fitrah Insani
{"title":"Filling-well: An effective technique to handle incomplete well-log data for lithology classification using machine learning algorithms","authors":"Sherly Ardhya Garini ,&nbsp;Ary Mazharuddin Shiddiqi ,&nbsp;Widya Utama ,&nbsp;Alif Nurdien Fitrah Insani","doi":"10.1016/j.mex.2024.103127","DOIUrl":null,"url":null,"abstract":"<div><div>Lithology classification is crucial for efficient and sustainable resource exploration in the oil and gas industry. Missing values in well-log data, such as Gamma Ray (GR), Neutron Porosity (NPHI), Bulk Density (RHOB), Deep Resistivity (RS), Delta Time Compressional (DTCO), Delta Time Shear (DTSM), and Resistivity Deep (RD), significantly affect machine learning classification accuracy. This study applied three algorithms, extreme gradient boosting (XGBoost), K-nearest neighbours (KNN), and the artificial neural network (ANN), to handle missing values in well-log datasets, particularly datasets with extreme missing data (30 %). Results indicated that XGBoost was the most efficient and accurate, especially for RHOB, NPHI, DTCO, and DTSM, with the lowest Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) values. The ANN also performed effectively, particularly on the GR, RS, and RD features, after the use of preprocessing techniques such as isolation forest and bias correction. However, the ANN can suffer from overfitting and requires large datasets for optimal performance. In contrast, KNN struggled with missing-not-at-random (MNAR) data due to its reliance on the k parameter and distance metric, making it less effective in mapping missing data relationships.<ul><li><span>•</span><span><div>Missing values in well-log data can hinder lithology classification accuracy for efficient resource exploration in the oil and gas industry.</div></span></li><li><span>•</span><span><div>This research aims to address the problem of missing values in well-log datasets by applying machine learning algorithms such as XGBoost, ANN, and KNN to enhance classification performance.</div></span></li><li><span>•</span><span><div>XGBoost demonstrated superior performance in handling extreme missing data (30 %) in well-log datasets. ANN was effective but prone to overfitting for small datasets, while KNN struggled with missing-not-at-random (MNAR) data due to limitations in its distance-based approach.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103127"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016124005788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lithology classification is crucial for efficient and sustainable resource exploration in the oil and gas industry. Missing values in well-log data, such as Gamma Ray (GR), Neutron Porosity (NPHI), Bulk Density (RHOB), Deep Resistivity (RS), Delta Time Compressional (DTCO), Delta Time Shear (DTSM), and Resistivity Deep (RD), significantly affect machine learning classification accuracy. This study applied three algorithms, extreme gradient boosting (XGBoost), K-nearest neighbours (KNN), and the artificial neural network (ANN), to handle missing values in well-log datasets, particularly datasets with extreme missing data (30 %). Results indicated that XGBoost was the most efficient and accurate, especially for RHOB, NPHI, DTCO, and DTSM, with the lowest Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) values. The ANN also performed effectively, particularly on the GR, RS, and RD features, after the use of preprocessing techniques such as isolation forest and bias correction. However, the ANN can suffer from overfitting and requires large datasets for optimal performance. In contrast, KNN struggled with missing-not-at-random (MNAR) data due to its reliance on the k parameter and distance metric, making it less effective in mapping missing data relationships.
  • Missing values in well-log data can hinder lithology classification accuracy for efficient resource exploration in the oil and gas industry.
  • This research aims to address the problem of missing values in well-log datasets by applying machine learning algorithms such as XGBoost, ANN, and KNN to enhance classification performance.
  • XGBoost demonstrated superior performance in handling extreme missing data (30 %) in well-log datasets. ANN was effective but prone to overfitting for small datasets, while KNN struggled with missing-not-at-random (MNAR) data due to limitations in its distance-based approach.

Abstract Image

填井:利用机器学习算法处理不完整测井数据进行岩性分类的有效技术。
在油气工业中,岩性分类对于高效、可持续的资源勘探至关重要。测井数据中的缺失值,如伽马射线(GR)、中子孔隙度(NPHI)、体积密度(RHOB)、深部电阻率(RS)、δ时间压缩(DTCO)、δ时间剪切(DTSM)和深部电阻率(RD),会严重影响机器学习分类的准确性。该研究应用了极端梯度增强(XGBoost)、k近邻(KNN)和人工神经网络(ANN)三种算法来处理测井数据集中的缺失值,特别是具有极端缺失数据(30%)的数据集。结果表明,XGBoost对RHOB、NPHI、DTCO和DTSM的检测效率和准确性最高,平均绝对百分比误差(MAPE)和均方根误差(RMSE)值最低。在使用隔离森林和偏差校正等预处理技术后,人工神经网络也表现良好,特别是在GR, RS和RD特征上。然而,人工神经网络可能会受到过拟合的影响,并且需要大型数据集才能获得最佳性能。相比之下,KNN由于依赖k参数和距离度量,在处理缺失非随机(MNAR)数据时遇到了困难,这使得它在映射缺失数据关系时效率较低。•测井数据中的缺失值可能会影响岩性分类的准确性,从而影响油气行业的高效资源勘探。•本研究旨在通过应用机器学习算法(如XGBoost、ANN和KNN)来提高分类性能,解决测井数据集中缺失值的问题。•XGBoost在处理测井数据集极端缺失数据(30%)方面表现出卓越的性能。人工神经网络是有效的,但容易对小数据集进行过拟合,而KNN由于其基于距离的方法的局限性,在处理缺失非随机(MNAR)数据方面遇到了困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信