Sarah L Harbach, Bang M Tran, Georgios Kastrappis, Hoanh Tran, Samantha L Grimley, Julie L McAuley, Abderrahman Hachani, Elizabeth Vincan
{"title":"Polarized Calu-3 Cells Serve as an Intermediary Model for SARS-CoV-2 Infection.","authors":"Sarah L Harbach, Bang M Tran, Georgios Kastrappis, Hoanh Tran, Samantha L Grimley, Julie L McAuley, Abderrahman Hachani, Elizabeth Vincan","doi":"10.1007/7651_2024_602","DOIUrl":null,"url":null,"abstract":"<p><p>Human nasal epithelium (HNE) organoid models of SARS-CoV-2 infection were adopted globally during the COVID-19 pandemic once it was recognized that the Vero cell line commonly used by virologists did not recapitulate human infection. However, the widespread use of HNE organoid infection models was hindered by the high cost of media and consumables, and the inherent limitation of basal cells as a scalable continuous source of cells. The human Calu-3 cell line, generated from a lung adenocarcinoma, was shown to largely recapitulate infection of the human epithelium and to preserve the SARS-CoV-2 genomic fidelity. We have previously shown that continuous cancer cell lines can polarize along the apical-basal axis when embedded in matrix and to more closely mimic infection of human cells when compared to their non-polarized, simple monolayer state. We have established and demonstrated that polarized Calu-3 cells constitute a robust SARS-CoV-2 infection model. The polarized Calu-3 cells are implemented in our respiratory virus isolation and amplification pipeline as an inexpensive, scalable, intermediary culture system to complement the HNE organoid model against which all respiratory culture models are benchmarked.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Human nasal epithelium (HNE) organoid models of SARS-CoV-2 infection were adopted globally during the COVID-19 pandemic once it was recognized that the Vero cell line commonly used by virologists did not recapitulate human infection. However, the widespread use of HNE organoid infection models was hindered by the high cost of media and consumables, and the inherent limitation of basal cells as a scalable continuous source of cells. The human Calu-3 cell line, generated from a lung adenocarcinoma, was shown to largely recapitulate infection of the human epithelium and to preserve the SARS-CoV-2 genomic fidelity. We have previously shown that continuous cancer cell lines can polarize along the apical-basal axis when embedded in matrix and to more closely mimic infection of human cells when compared to their non-polarized, simple monolayer state. We have established and demonstrated that polarized Calu-3 cells constitute a robust SARS-CoV-2 infection model. The polarized Calu-3 cells are implemented in our respiratory virus isolation and amplification pipeline as an inexpensive, scalable, intermediary culture system to complement the HNE organoid model against which all respiratory culture models are benchmarked.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.