Prognostic value of manual versus automatic methods for assessing extents of resection and residual tumor volume in glioblastoma.

IF 3.5 2区 医学 Q1 CLINICAL NEUROLOGY
Paulina Majewska, Ragnhild Holden Helland, Alexandros Ferles, André Pedersen, Ivar Kommers, Hilko Ardon, Frederik Barkhof, Lorenzo Bello, Mitchel S Berger, Tora Dunås, Marco Conti Nibali, Julia Furtner, Shawn L Hervey-Jumper, Albert J S Idema, Barbara Kiesel, Rishi Nandoe Tewarie, Emmanuel Mandonnet, Domenique M J Müller, Pierre A Robe, Marco Rossi, Tommaso Sciortino, Tom Aalders, Michiel Wagemakers, Georg Widhalm, Aeilko H Zwinderman, Philip C De Witt Hamer, Roelant S Eijgelaar, Lisa Millgård Sagberg, Asgeir Store Jakola, Erik Thurin, Ingerid Reinertsen, David Bouget, Ole Solheim
{"title":"Prognostic value of manual versus automatic methods for assessing extents of resection and residual tumor volume in glioblastoma.","authors":"Paulina Majewska, Ragnhild Holden Helland, Alexandros Ferles, André Pedersen, Ivar Kommers, Hilko Ardon, Frederik Barkhof, Lorenzo Bello, Mitchel S Berger, Tora Dunås, Marco Conti Nibali, Julia Furtner, Shawn L Hervey-Jumper, Albert J S Idema, Barbara Kiesel, Rishi Nandoe Tewarie, Emmanuel Mandonnet, Domenique M J Müller, Pierre A Robe, Marco Rossi, Tommaso Sciortino, Tom Aalders, Michiel Wagemakers, Georg Widhalm, Aeilko H Zwinderman, Philip C De Witt Hamer, Roelant S Eijgelaar, Lisa Millgård Sagberg, Asgeir Store Jakola, Erik Thurin, Ingerid Reinertsen, David Bouget, Ole Solheim","doi":"10.3171/2024.8.JNS24415","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The extent of resection (EOR) and postoperative residual tumor (RT) volume are prognostic factors in glioblastoma. Calculations of EOR and RT rely on accurate tumor segmentations. Raidionics is an open-access software that enables automatic segmentation of preoperative and early postoperative glioblastoma using pretrained deep learning models. The aim of this study was to compare the prognostic value of manually versus automatically assessed volumetric measurements in glioblastoma patients.</p><p><strong>Methods: </strong>Adult patients who underwent resection of histopathologically confirmed glioblastoma were included from 12 different hospitals in Europe and North America. Patient characteristics and survival data were collected as part of local tumor registries or were retrieved from patient medical records. The prognostic value of manually and automatically assessed EOR and RT volume was compared using Cox regression models.</p><p><strong>Results: </strong>Both manually and automatically assessed RT volumes were a negative prognostic factor for overall survival (manual vs automatic: HR 1.051, 95% CI 1.034-1.067 [p < 0.001] vs HR 1.019, 95% CI 1.007-1.030 [p = 0.001]). Both manual and automatic EOR models showed that patients with gross-total resection have significantly longer overall survival compared with those with subtotal resection (manual vs automatic: HR 1.580, 95% CI 1.291-1.932 [p < 0.001] vs HR 1.395, 95% CI 1.160-1.679 [p < 0.001]), but no significant prognostic difference of gross-total compared with near-total (90%-99%) resection was found. According to the Akaike information criterion and the Bayesian information criterion, all multivariable Cox regression models showed similar goodness-of-fit.</p><p><strong>Conclusions: </strong>Automatically and manually measured EOR and RT volumes have comparable prognostic properties. Automatic segmentation with Raidionics can be used in future studies in patients with glioblastoma.</p>","PeriodicalId":16505,"journal":{"name":"Journal of neurosurgery","volume":" ","pages":"1-9"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurosurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3171/2024.8.JNS24415","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The extent of resection (EOR) and postoperative residual tumor (RT) volume are prognostic factors in glioblastoma. Calculations of EOR and RT rely on accurate tumor segmentations. Raidionics is an open-access software that enables automatic segmentation of preoperative and early postoperative glioblastoma using pretrained deep learning models. The aim of this study was to compare the prognostic value of manually versus automatically assessed volumetric measurements in glioblastoma patients.

Methods: Adult patients who underwent resection of histopathologically confirmed glioblastoma were included from 12 different hospitals in Europe and North America. Patient characteristics and survival data were collected as part of local tumor registries or were retrieved from patient medical records. The prognostic value of manually and automatically assessed EOR and RT volume was compared using Cox regression models.

Results: Both manually and automatically assessed RT volumes were a negative prognostic factor for overall survival (manual vs automatic: HR 1.051, 95% CI 1.034-1.067 [p < 0.001] vs HR 1.019, 95% CI 1.007-1.030 [p = 0.001]). Both manual and automatic EOR models showed that patients with gross-total resection have significantly longer overall survival compared with those with subtotal resection (manual vs automatic: HR 1.580, 95% CI 1.291-1.932 [p < 0.001] vs HR 1.395, 95% CI 1.160-1.679 [p < 0.001]), but no significant prognostic difference of gross-total compared with near-total (90%-99%) resection was found. According to the Akaike information criterion and the Bayesian information criterion, all multivariable Cox regression models showed similar goodness-of-fit.

Conclusions: Automatically and manually measured EOR and RT volumes have comparable prognostic properties. Automatic segmentation with Raidionics can be used in future studies in patients with glioblastoma.

评估胶质母细胞瘤切除范围和残余肿瘤体积的手动方法与自动方法的预后价值。
目的:胶质母细胞瘤的切除范围(EOR)和术后残余肿瘤(RT)体积是影响肿瘤预后的重要因素。EOR和RT的计算依赖于精确的肿瘤分割。Raidionics是一个开放获取的软件,可以使用预训练的深度学习模型自动分割术前和术后早期的胶质母细胞瘤。本研究的目的是比较人工和自动评估的体积测量在胶质母细胞瘤患者中的预后价值。方法:来自欧洲和北美12家不同医院的经组织病理学证实的胶质母细胞瘤切除术的成年患者。患者特征和生存数据作为当地肿瘤登记的一部分收集或从患者医疗记录中检索。采用Cox回归模型比较人工和自动评估的EOR和RT体积的预后价值。结果:人工和自动评估的RT体积都是总生存期的负面预后因素(人工vs自动:HR 1.051, 95% CI 1.034-1.067 [p < 0.001] vs HR 1.019, 95% CI 1.007-1.030 [p = 0.001])。手工和自动EOR模型均显示,与次全切除术患者相比,总生存率明显更长(手工与自动:HR 1.580, 95% CI 1.291-1.932 [p < 0.001] vs HR 1.395, 95% CI 1.160-1.679 [p < 0.001]),但未发现总切除与近全切除术(90%-99%)的预后差异显著。根据赤池信息准则和贝叶斯信息准则,各多变量Cox回归模型的拟合优度相近。结论:自动和手动测量EOR和RT体积具有相似的预后特性。放射电子学的自动分割可用于胶质母细胞瘤患者的未来研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of neurosurgery
Journal of neurosurgery 医学-临床神经学
CiteScore
7.20
自引率
7.30%
发文量
1003
审稿时长
1 months
期刊介绍: The Journal of Neurosurgery, Journal of Neurosurgery: Spine, Journal of Neurosurgery: Pediatrics, and Neurosurgical Focus are devoted to the publication of original works relating primarily to neurosurgery, including studies in clinical neurophysiology, organic neurology, ophthalmology, radiology, pathology, and molecular biology. The Editors and Editorial Boards encourage submission of clinical and laboratory studies. Other manuscripts accepted for review include technical notes on instruments or equipment that are innovative or useful to clinicians and researchers in the field of neuroscience; papers describing unusual cases; manuscripts on historical persons or events related to neurosurgery; and in Neurosurgical Focus, occasional reviews. Letters to the Editor commenting on articles recently published in the Journal of Neurosurgery, Journal of Neurosurgery: Spine, and Journal of Neurosurgery: Pediatrics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信