Joosung Min, Olga Vishnyakova, Angela Brooks-Wilson, Lloyd T Elliott
{"title":"A Joint Bayesian Model for Change-Points and Heteroskedasticity Applied to the Canadian Longitudinal Study on Aging.","authors":"Joosung Min, Olga Vishnyakova, Angela Brooks-Wilson, Lloyd T Elliott","doi":"10.1089/cmb.2024.0563","DOIUrl":null,"url":null,"abstract":"<p><p>Maintaining homeostasis, the regulation of internal physiological parameters, is essential for health and well-being. Deviations from optimal levels, or 'sweet spots,' can lead to health deterioration and disease. Identifying biomarkers with sweet spots requires both change-point detection and variance effect analysis. Traditional approaches involve separate tests for change-points and heteroskedasticity, which can yield inaccurate results if model assumptions are violated. To address these challenges, we propose a unified approach: Bayesian Testing for Heteroskedasticity and Sweet Spots (BTHS). This framework integrates sampling-based parameter estimation and Bayes factor computation to enhance change-point detection, heteroskedasticity quantification, and testing in change-point regression settings, and extends previous Bayesian approaches. BTHS eliminates the need for separate analyses and provides detailed insights into both the magnitude and shape of heteroskedasticity, enabling robust identification of sweet spots without strong assumptions. We applied BTHS to blood elements from the Canadian Longitudinal Study on Aging identifying nine blood elements with significant sweet spot variance effects.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0563","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Maintaining homeostasis, the regulation of internal physiological parameters, is essential for health and well-being. Deviations from optimal levels, or 'sweet spots,' can lead to health deterioration and disease. Identifying biomarkers with sweet spots requires both change-point detection and variance effect analysis. Traditional approaches involve separate tests for change-points and heteroskedasticity, which can yield inaccurate results if model assumptions are violated. To address these challenges, we propose a unified approach: Bayesian Testing for Heteroskedasticity and Sweet Spots (BTHS). This framework integrates sampling-based parameter estimation and Bayes factor computation to enhance change-point detection, heteroskedasticity quantification, and testing in change-point regression settings, and extends previous Bayesian approaches. BTHS eliminates the need for separate analyses and provides detailed insights into both the magnitude and shape of heteroskedasticity, enabling robust identification of sweet spots without strong assumptions. We applied BTHS to blood elements from the Canadian Longitudinal Study on Aging identifying nine blood elements with significant sweet spot variance effects.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases