A Joint Bayesian Model for Change-Points and Heteroskedasticity Applied to the Canadian Longitudinal Study on Aging.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Joosung Min, Olga Vishnyakova, Angela Brooks-Wilson, Lloyd T Elliott
{"title":"A Joint Bayesian Model for Change-Points and Heteroskedasticity Applied to the Canadian Longitudinal Study on Aging.","authors":"Joosung Min, Olga Vishnyakova, Angela Brooks-Wilson, Lloyd T Elliott","doi":"10.1089/cmb.2024.0563","DOIUrl":null,"url":null,"abstract":"<p><p>Maintaining homeostasis, the regulation of internal physiological parameters, is essential for health and well-being. Deviations from optimal levels, or 'sweet spots,' can lead to health deterioration and disease. Identifying biomarkers with sweet spots requires both change-point detection and variance effect analysis. Traditional approaches involve separate tests for change-points and heteroskedasticity, which can yield inaccurate results if model assumptions are violated. To address these challenges, we propose a unified approach: Bayesian Testing for Heteroskedasticity and Sweet Spots (BTHS). This framework integrates sampling-based parameter estimation and Bayes factor computation to enhance change-point detection, heteroskedasticity quantification, and testing in change-point regression settings, and extends previous Bayesian approaches. BTHS eliminates the need for separate analyses and provides detailed insights into both the magnitude and shape of heteroskedasticity, enabling robust identification of sweet spots without strong assumptions. We applied BTHS to blood elements from the Canadian Longitudinal Study on Aging identifying nine blood elements with significant sweet spot variance effects.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0563","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Maintaining homeostasis, the regulation of internal physiological parameters, is essential for health and well-being. Deviations from optimal levels, or 'sweet spots,' can lead to health deterioration and disease. Identifying biomarkers with sweet spots requires both change-point detection and variance effect analysis. Traditional approaches involve separate tests for change-points and heteroskedasticity, which can yield inaccurate results if model assumptions are violated. To address these challenges, we propose a unified approach: Bayesian Testing for Heteroskedasticity and Sweet Spots (BTHS). This framework integrates sampling-based parameter estimation and Bayes factor computation to enhance change-point detection, heteroskedasticity quantification, and testing in change-point regression settings, and extends previous Bayesian approaches. BTHS eliminates the need for separate analyses and provides detailed insights into both the magnitude and shape of heteroskedasticity, enabling robust identification of sweet spots without strong assumptions. We applied BTHS to blood elements from the Canadian Longitudinal Study on Aging identifying nine blood elements with significant sweet spot variance effects.

变化点和异方差联合贝叶斯模型在加拿大老龄化纵向研究中的应用。
维持体内平衡,调节内部生理参数,对健康和幸福至关重要。偏离最佳水平或“最佳点”会导致健康恶化和疾病。识别具有最佳点的生物标志物需要变化点检测和方差效应分析。传统的方法包括对变化点和异方差的单独测试,如果模型假设被违反,可能会产生不准确的结果。为了解决这些挑战,我们提出了一种统一的方法:异方差和最佳点贝叶斯检验(BTHS)。该框架集成了基于采样的参数估计和贝叶斯因子计算,以增强变化点检测、异方差量化和变化点回归设置中的测试,并扩展了以前的贝叶斯方法。BTHS消除了单独分析的需要,并提供了对异方差的大小和形状的详细见解,可以在没有强假设的情况下可靠地识别最佳点。我们将BTHS应用于加拿大衰老纵向研究中的血液元素,确定了九种具有显著甜点方差效应的血液元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信