{"title":"Taming vision transformers for clinical laryngoscopy assessment","authors":"Xinzhu Zhang , Jing Zhao , Daoming Zong , Henglei Ren , Chunli Gao","doi":"10.1016/j.jbi.2024.104766","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective:</h3><div>Laryngoscopy, essential for diagnosing laryngeal cancer (LCA), faces challenges due to high inter-observer variability and the reliance on endoscopist expertise. Distinguishing precancerous from early-stage cancerous lesions is particularly challenging, even for experienced practitioners, given their similar appearances. This study aims to enhance laryngoscopic image analysis to improve early screening/detection of cancer or precancerous conditions.</div></div><div><h3>Methods:</h3><div>We propose MedFormer, a laryngeal cancer classification method based on the Vision Transformer (ViT). To address data scarcity, MedFormer employs a customized transfer learning approach that leverages the representational power of pre-trained transformers. This method enables robust out-of-domain generalization by fine-tuning a minimal set of additional parameters.</div></div><div><h3>Results:</h3><div>MedFormer exhibits sensitivity-specificity values of 98%–89% for identifying precancerous lesions (leukoplakia) and 89%–97% for detecting cancer, surpassing CNN counterparts significantly. Additionally, when compared to the two selected ViT-based models, MedFormer also demonstrates superior performance. It also outperforms physician visual evaluations (PVE) in certain scenarios and matches PVE performance in all cases. Visualizations using class activation maps (CAM) and deformable patches demonstrate MedFormer’s interpretability, aiding clinicians in understanding the model’s predictions.</div></div><div><h3>Conclusion:</h3><div>We highlight the potential of visual transformers in clinical laryngoscopic assessments, presenting MedFormer as an effective method for the early detection of laryngeal cancer.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"162 ","pages":"Article 104766"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424001849","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective:
Laryngoscopy, essential for diagnosing laryngeal cancer (LCA), faces challenges due to high inter-observer variability and the reliance on endoscopist expertise. Distinguishing precancerous from early-stage cancerous lesions is particularly challenging, even for experienced practitioners, given their similar appearances. This study aims to enhance laryngoscopic image analysis to improve early screening/detection of cancer or precancerous conditions.
Methods:
We propose MedFormer, a laryngeal cancer classification method based on the Vision Transformer (ViT). To address data scarcity, MedFormer employs a customized transfer learning approach that leverages the representational power of pre-trained transformers. This method enables robust out-of-domain generalization by fine-tuning a minimal set of additional parameters.
Results:
MedFormer exhibits sensitivity-specificity values of 98%–89% for identifying precancerous lesions (leukoplakia) and 89%–97% for detecting cancer, surpassing CNN counterparts significantly. Additionally, when compared to the two selected ViT-based models, MedFormer also demonstrates superior performance. It also outperforms physician visual evaluations (PVE) in certain scenarios and matches PVE performance in all cases. Visualizations using class activation maps (CAM) and deformable patches demonstrate MedFormer’s interpretability, aiding clinicians in understanding the model’s predictions.
Conclusion:
We highlight the potential of visual transformers in clinical laryngoscopic assessments, presenting MedFormer as an effective method for the early detection of laryngeal cancer.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.