Adediwura Arowosegbe, Zhiru Guo, Emma Vanderleeden, Alan G. Derr, Jennifer P. Wang
{"title":"Janus kinase inhibition prevents autoimmune diabetes in LEW.1WR1 rats","authors":"Adediwura Arowosegbe, Zhiru Guo, Emma Vanderleeden, Alan G. Derr, Jennifer P. Wang","doi":"10.1016/j.jaut.2025.103358","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous studies highlight the essential role of type I interferon (IFN) responses in type 1 diabetes. The absence of type I IFN signaling is associated with a partial reduction of autoimmune diabetes incidence in LEW.1WR1 rats. We sought to delineate type I IFN-independent mechanisms that drive diabetes using type I IFN α/β receptor (IFNAR) knockout rats. Rats were treated with polyinosinic:polycytidylic acid plus Kilham rat virus to induce diabetes. Single-cell RNA-sequencing of islets and cytokine measurements in blood and spleen from prediabetic <em>Ifnar1</em><sup>−/−</sup> rats were employed to identify factors driving insulitis in the global absence of IFNAR signaling. Islet immune cells were enriched for <em>Ccl4, Ccl5,</em> and <em>Ifng</em>. In addition, interleukin-1 (IL-1) was increased in spleen, and IFN-γ was increased in serum from prediabetic <em>Ifnar1</em><sup>−/−</sup> rats. Based on these findings, rats were treated with a C-C chemokine receptor type 5 inhibitor, an IL-1 receptor antagonist, or a nucleotide-binding oligomerization domain-like receptor family pyrin-domain containing 3 inhibitor, none of which prevented diabetes. The Janus kinase inhibitor ruxolitinib, which blocks both type I and II interferon-driven signaling, completely prevented diabetes, but only when given for a sustained period starting from the time of induction. The tyrosine kinase 2 inhibitor deucravacitinib also prevented diabetes to a significant degree. We conclude that type I and II IFNs act in concert as the main drivers of autoimmune diabetes and that inhibition of downstream signaling events for both is required for disease prevention.</div></div>","PeriodicalId":15245,"journal":{"name":"Journal of autoimmunity","volume":"151 ","pages":"Article 103358"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of autoimmunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896841125000034","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous studies highlight the essential role of type I interferon (IFN) responses in type 1 diabetes. The absence of type I IFN signaling is associated with a partial reduction of autoimmune diabetes incidence in LEW.1WR1 rats. We sought to delineate type I IFN-independent mechanisms that drive diabetes using type I IFN α/β receptor (IFNAR) knockout rats. Rats were treated with polyinosinic:polycytidylic acid plus Kilham rat virus to induce diabetes. Single-cell RNA-sequencing of islets and cytokine measurements in blood and spleen from prediabetic Ifnar1−/− rats were employed to identify factors driving insulitis in the global absence of IFNAR signaling. Islet immune cells were enriched for Ccl4, Ccl5, and Ifng. In addition, interleukin-1 (IL-1) was increased in spleen, and IFN-γ was increased in serum from prediabetic Ifnar1−/− rats. Based on these findings, rats were treated with a C-C chemokine receptor type 5 inhibitor, an IL-1 receptor antagonist, or a nucleotide-binding oligomerization domain-like receptor family pyrin-domain containing 3 inhibitor, none of which prevented diabetes. The Janus kinase inhibitor ruxolitinib, which blocks both type I and II interferon-driven signaling, completely prevented diabetes, but only when given for a sustained period starting from the time of induction. The tyrosine kinase 2 inhibitor deucravacitinib also prevented diabetes to a significant degree. We conclude that type I and II IFNs act in concert as the main drivers of autoimmune diabetes and that inhibition of downstream signaling events for both is required for disease prevention.
期刊介绍:
The Journal of Autoimmunity serves as the primary publication for research on various facets of autoimmunity. These include topics such as the mechanism of self-recognition, regulation of autoimmune responses, experimental autoimmune diseases, diagnostic tests for autoantibodies, as well as the epidemiology, pathophysiology, and treatment of autoimmune diseases. While the journal covers a wide range of subjects, it emphasizes papers exploring the genetic, molecular biology, and cellular aspects of the field.
The Journal of Translational Autoimmunity, on the other hand, is a subsidiary journal of the Journal of Autoimmunity. It focuses specifically on translating scientific discoveries in autoimmunity into clinical applications and practical solutions. By highlighting research that bridges the gap between basic science and clinical practice, the Journal of Translational Autoimmunity aims to advance the understanding and treatment of autoimmune diseases.