Shixu Lin , Lucas Garay , Yining Hua , Zhijiang Guo , Wanxin Li , Minghui Li , Yujie Zhang , Xiaolin Xu , Jie Yang
{"title":"Analysis of longitudinal social media for monitoring symptoms during a pandemic","authors":"Shixu Lin , Lucas Garay , Yining Hua , Zhijiang Guo , Wanxin Li , Minghui Li , Yujie Zhang , Xiaolin Xu , Jie Yang","doi":"10.1016/j.jbi.2025.104778","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Current studies leveraging social media data for disease monitoring face challenges like noisy colloquial language and insufficient tracking of user disease progression in longitudinal data settings. This study aims to develop a pipeline for collecting, cleaning, and analyzing large-scale longitudinal social media data for disease monitoring, with a focus on COVID-19 pandemic.</div></div><div><h3>Materials and methods</h3><div>This pipeline initiates by screening COVID-19 cases from tweets spanning February 1, 2020, to April 30, 2022. Longitudinal data is collected for each patient, two months before and three months after self-reporting. Symptoms are extracted using Name Entity Recognition (NER), followed by denoising with a combination of Graph Convolutional Network (GCN) and Bidirectional Encoder Representations from Transformers (BERT) model to retain only User-experienced Symptom Mentions (USM). Subsequently, symptoms are mapped to standardized medical concepts using the Unified Medical Language System (UMLS). Finally, this study conducts symptom pattern analysis and visualization to illustrate temporal changes in symptom prevalence and co-occurrence.</div></div><div><h3>Results</h3><div>This study identified 191,096 self-reported COVID-19-positive cases from COVID-19-related tweets and retrospectively collected 811,398,280 historical tweets, of which 2,120,964 contained symptoms information. After denoising, 39 % (832,287) of symptom-sharing tweets reflected user-experienced mentions. The trained USM model achieved an average F1 score of 0.927. Further analysis revealed a higher prevalence of upper respiratory tract symptoms during the Omicron period compared to the Delta and Wild-type periods. Additionally, there was a pronounced co-occurrence of lower respiratory tract and nervous system symptoms in the Wild-type strain and Delta variant.</div></div><div><h3>Conclusion</h3><div>This study established a robust framework for analyzing longitudinal social media data to monitor symptoms during a pandemic. By integrating denoising of user-experienced symptom mentions, our findings reveal the duration of different symptoms over time and by variant within a cohort of nearly 200,000 patients, providing critical insights into symptom trends that are often difficult to capture through traditional data source.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"162 ","pages":"Article 104778"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000073","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Current studies leveraging social media data for disease monitoring face challenges like noisy colloquial language and insufficient tracking of user disease progression in longitudinal data settings. This study aims to develop a pipeline for collecting, cleaning, and analyzing large-scale longitudinal social media data for disease monitoring, with a focus on COVID-19 pandemic.
Materials and methods
This pipeline initiates by screening COVID-19 cases from tweets spanning February 1, 2020, to April 30, 2022. Longitudinal data is collected for each patient, two months before and three months after self-reporting. Symptoms are extracted using Name Entity Recognition (NER), followed by denoising with a combination of Graph Convolutional Network (GCN) and Bidirectional Encoder Representations from Transformers (BERT) model to retain only User-experienced Symptom Mentions (USM). Subsequently, symptoms are mapped to standardized medical concepts using the Unified Medical Language System (UMLS). Finally, this study conducts symptom pattern analysis and visualization to illustrate temporal changes in symptom prevalence and co-occurrence.
Results
This study identified 191,096 self-reported COVID-19-positive cases from COVID-19-related tweets and retrospectively collected 811,398,280 historical tweets, of which 2,120,964 contained symptoms information. After denoising, 39 % (832,287) of symptom-sharing tweets reflected user-experienced mentions. The trained USM model achieved an average F1 score of 0.927. Further analysis revealed a higher prevalence of upper respiratory tract symptoms during the Omicron period compared to the Delta and Wild-type periods. Additionally, there was a pronounced co-occurrence of lower respiratory tract and nervous system symptoms in the Wild-type strain and Delta variant.
Conclusion
This study established a robust framework for analyzing longitudinal social media data to monitor symptoms during a pandemic. By integrating denoising of user-experienced symptom mentions, our findings reveal the duration of different symptoms over time and by variant within a cohort of nearly 200,000 patients, providing critical insights into symptom trends that are often difficult to capture through traditional data source.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.