Xiaoyu Wang, Wendu Pang, Xin Hu, Tao Shu, Yaxin Luo, Junhong Li, Lan Feng, Ke Qiu, Yufang Rao, Yao Song, Minzi Mao, Yuyang Zhang, Jianjun Ren, Yu Zhao
{"title":"Conventional and genetic association between migraine and stroke with druggable genome-wide Mendelian randomization.","authors":"Xiaoyu Wang, Wendu Pang, Xin Hu, Tao Shu, Yaxin Luo, Junhong Li, Lan Feng, Ke Qiu, Yufang Rao, Yao Song, Minzi Mao, Yuyang Zhang, Jianjun Ren, Yu Zhao","doi":"10.1007/s00439-024-02725-7","DOIUrl":null,"url":null,"abstract":"<p><p>The genetic relationship between migraine and stroke remains underexplored, particularly in the context of druggable targets. Previous studies have been limited by small sample sizes and a lack of focus on genetic-targeted therapies for these conditions. We analyzed the association and causality between migraine and stroke using multivariable logistic regression in the UK Biobank cohort and Mendelian randomization (MR) analyses based on genome-wide association study (GWAS) data. Integrating expression quantitative trait loci (eQTLs) data from blood and brain regions, we explored the phenotypic and genetic links between migraine medications, drug target, and stroke. Additionally, we explored novel druggable genes for migraine and evaluated their effects on migraine signaling molecules and stroke risk. Migraine was significantly associated with stroke, particularly ischemic stroke (IS) and intracerebral hemorrhage (ICH), with MR analysis confirming a causal link to ICH. HTR1A emerged as a potential link between antidepressants (preventive medications for migraine) and stroke. We identified 17 migraine-related druggable genes, with 5 genes (HMGCR, TGFB1, TGFB3, KCNK5, IMPDH2) associated with nine existing drugs. Further MR analysis identified correlation of CELSR3 and IMPDH2 with cGMP pathway marker PRKG1, and identified KCNK5, PLXNB1, and MDK as novel migraine-associated druggable genes significantly linked to the stroke risks. These findings established the phenotypic and genetic link between migraine, its medication and stroke, identifying potential targets for single and dual-purpose therapies for migraine and stoke, and emphasized the need for further research to validate these associations.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-024-02725-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The genetic relationship between migraine and stroke remains underexplored, particularly in the context of druggable targets. Previous studies have been limited by small sample sizes and a lack of focus on genetic-targeted therapies for these conditions. We analyzed the association and causality between migraine and stroke using multivariable logistic regression in the UK Biobank cohort and Mendelian randomization (MR) analyses based on genome-wide association study (GWAS) data. Integrating expression quantitative trait loci (eQTLs) data from blood and brain regions, we explored the phenotypic and genetic links between migraine medications, drug target, and stroke. Additionally, we explored novel druggable genes for migraine and evaluated their effects on migraine signaling molecules and stroke risk. Migraine was significantly associated with stroke, particularly ischemic stroke (IS) and intracerebral hemorrhage (ICH), with MR analysis confirming a causal link to ICH. HTR1A emerged as a potential link between antidepressants (preventive medications for migraine) and stroke. We identified 17 migraine-related druggable genes, with 5 genes (HMGCR, TGFB1, TGFB3, KCNK5, IMPDH2) associated with nine existing drugs. Further MR analysis identified correlation of CELSR3 and IMPDH2 with cGMP pathway marker PRKG1, and identified KCNK5, PLXNB1, and MDK as novel migraine-associated druggable genes significantly linked to the stroke risks. These findings established the phenotypic and genetic link between migraine, its medication and stroke, identifying potential targets for single and dual-purpose therapies for migraine and stoke, and emphasized the need for further research to validate these associations.
期刊介绍:
Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology.
Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted.
The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.