Nanopore-based random genomic sampling for intraoperative molecular diagnosis.

IF 10.4 1区 生物学 Q1 GENETICS & HEREDITY
Francesco E Emiliani, Abdol Aziz Ould Ismail, Edward G Hughes, Gregory J Tsongalis, George J Zanazzi, Chun-Chieh Lin
{"title":"Nanopore-based random genomic sampling for intraoperative molecular diagnosis.","authors":"Francesco E Emiliani, Abdol Aziz Ould Ismail, Edward G Hughes, Gregory J Tsongalis, George J Zanazzi, Chun-Chieh Lin","doi":"10.1186/s13073-025-01427-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Central nervous system tumors are among the most lethal types of cancer. A critical factor for tailored neurosurgical resection strategies depends on specific tumor types. However, it is uncommon to have a preoperative tumor diagnosis, and intraoperative morphology-based diagnosis remains challenging. Despite recent advances in intraoperative methylation classifications of brain tumors, accuracy may be compromised by low tumor purity. Copy number variations (CNVs), which are almost ubiquitous in cancer, offer highly sensitive molecular biomarkers for diagnosis. These quantitative genomic alterations provide insight into dysregulated oncogenic pathways and can reveal potential targets for molecular therapies.</p><p><strong>Methods: </strong>We develop iSCORED, a one-step random genomic DNA reconstruction method that enables efficient, unbiased quantification of genome-wide CNVs. By concatenating multiple genomic fragments into long reads, the method leverages low-pass sequencing to generate approximately 1-2 million genomic fragments within 1 h. This approach allows for ultrafast high-resolution CNV analysis at a genomic resolution of 50 kb. In addition, concurrent methylation profiling enables brain tumor methylation classification and identifies promoter methylation in amplified oncogenes, providing an integrated diagnostic approach.</p><p><strong>Results: </strong>In our retrospective cohort of 26 malignant brain tumors, iSCORED demonstrated 100% concordance in CNV detection, including chromosomal alterations and oncogene amplifications, when compared to clinically validated assays such as Next-Generation Sequencing and Chromosomal Microarray. Furthermore, we validated iSCORED's real-time applicability in 15 diagnostically challenging primary brain tumors, achieving 100% concordance in detecting aberrant CNV detection, including diagnostic chromosomal gains/losses and oncogene amplifications (10/10). Of these, 14 out of 15 brain tumor methylation classifications aligned with final pathological diagnoses. This streamlined workflow-from tissue arrival to automatic generation of CNV and methylation reports-can be completed within 105 min.</p><p><strong>Conclusions: </strong>The iSCORED pipeline represents the first method capable of high-resolution CNV detection within the intraoperative timeframe. By combining CNV detection and methylation classification, iSCORED provides a rapid and comprehensive molecular diagnostic tool that can inform rapid clinical decision. The integrated approach not only enhances the accuracy of tumor diagnosis but also optimizes surgical planning and identifies potential molecular therapies, all within the critical intraoperative timeframe.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"6"},"PeriodicalIF":10.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01427-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Central nervous system tumors are among the most lethal types of cancer. A critical factor for tailored neurosurgical resection strategies depends on specific tumor types. However, it is uncommon to have a preoperative tumor diagnosis, and intraoperative morphology-based diagnosis remains challenging. Despite recent advances in intraoperative methylation classifications of brain tumors, accuracy may be compromised by low tumor purity. Copy number variations (CNVs), which are almost ubiquitous in cancer, offer highly sensitive molecular biomarkers for diagnosis. These quantitative genomic alterations provide insight into dysregulated oncogenic pathways and can reveal potential targets for molecular therapies.

Methods: We develop iSCORED, a one-step random genomic DNA reconstruction method that enables efficient, unbiased quantification of genome-wide CNVs. By concatenating multiple genomic fragments into long reads, the method leverages low-pass sequencing to generate approximately 1-2 million genomic fragments within 1 h. This approach allows for ultrafast high-resolution CNV analysis at a genomic resolution of 50 kb. In addition, concurrent methylation profiling enables brain tumor methylation classification and identifies promoter methylation in amplified oncogenes, providing an integrated diagnostic approach.

Results: In our retrospective cohort of 26 malignant brain tumors, iSCORED demonstrated 100% concordance in CNV detection, including chromosomal alterations and oncogene amplifications, when compared to clinically validated assays such as Next-Generation Sequencing and Chromosomal Microarray. Furthermore, we validated iSCORED's real-time applicability in 15 diagnostically challenging primary brain tumors, achieving 100% concordance in detecting aberrant CNV detection, including diagnostic chromosomal gains/losses and oncogene amplifications (10/10). Of these, 14 out of 15 brain tumor methylation classifications aligned with final pathological diagnoses. This streamlined workflow-from tissue arrival to automatic generation of CNV and methylation reports-can be completed within 105 min.

Conclusions: The iSCORED pipeline represents the first method capable of high-resolution CNV detection within the intraoperative timeframe. By combining CNV detection and methylation classification, iSCORED provides a rapid and comprehensive molecular diagnostic tool that can inform rapid clinical decision. The integrated approach not only enhances the accuracy of tumor diagnosis but also optimizes surgical planning and identifies potential molecular therapies, all within the critical intraoperative timeframe.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Medicine
Genome Medicine GENETICS & HEREDITY-
CiteScore
20.80
自引率
0.80%
发文量
128
审稿时长
6-12 weeks
期刊介绍: Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信