Fellipe Soares Dos Santos Cardoso, Guilherme Dos Santos Maria, Fernanda Marques Pestana, Ricardo Cardoso, Bruna Dos Santos Ramalho, Luiza Dos Santos Heringer, Tiago Bastos Taboada, Ana Maria Blanco Martinez, Fernanda Martins de Almeida
{"title":"Nerve repair with polylactic acid and inosine treatment enhance regeneration and improve functional recovery after sciatic nerve transection.","authors":"Fellipe Soares Dos Santos Cardoso, Guilherme Dos Santos Maria, Fernanda Marques Pestana, Ricardo Cardoso, Bruna Dos Santos Ramalho, Luiza Dos Santos Heringer, Tiago Bastos Taboada, Ana Maria Blanco Martinez, Fernanda Martins de Almeida","doi":"10.3389/fncel.2024.1525024","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Following transection, nerve repair using the polylactic acid (PLA) conduit is an effective option. In addition, inosine treatment has shown potential to promote nerve regeneration. Therefore, this study aimed to investigate the regenerative potential of inosine after nerve transection and polylactic acid conduit repair.</p><p><strong>Methods: </strong>C57/Black6 mice were subjected to sciatic nerve transection, repair with PLA conduit, and intraperitoneal injection of saline or inosine 1 h after injury and daily for 1 week. To assess motor and sensory recovery, functional tests were performed before and weekly up to 8 weeks after injury. Following, to evaluate the promotion of regeneration and myelination, electroneuromyography, morphometric analysis and immunohistochemistry were then performed.</p><p><strong>Results: </strong>Our results showed that the inosine group had a greater number of myelinated nerve fibers (1,293 ± 85.49 vs. 817 ± 89.2), an increase in neurofilament high chain (NFH) and myelin basic protein (MBP) immunolabeling and a greater number of fibers within the ideal g-ratio (453.8 ± 45.24 vs. 336.6 ± 37.01). In addition, the inosine group presented a greater adenosine A2 receptor (A2AR) immunolabeling area. This resulted in greater compound muscle action potential amplitude and nerve conduction velocity, leading to preservation of muscle and neuromuscular junction integrity, and consequently, the recovery of motor and sensory function.</p><p><strong>Conclusion: </strong>Our findings suggest that inosine may enhance regeneration and improve both motor and sensory function recovery after nerve transection when repaired with a poly-lactic acid conduit. This advances the understanding of biomaterials and molecular treatments.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"18 ","pages":"1525024"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743644/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncel.2024.1525024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Following transection, nerve repair using the polylactic acid (PLA) conduit is an effective option. In addition, inosine treatment has shown potential to promote nerve regeneration. Therefore, this study aimed to investigate the regenerative potential of inosine after nerve transection and polylactic acid conduit repair.
Methods: C57/Black6 mice were subjected to sciatic nerve transection, repair with PLA conduit, and intraperitoneal injection of saline or inosine 1 h after injury and daily for 1 week. To assess motor and sensory recovery, functional tests were performed before and weekly up to 8 weeks after injury. Following, to evaluate the promotion of regeneration and myelination, electroneuromyography, morphometric analysis and immunohistochemistry were then performed.
Results: Our results showed that the inosine group had a greater number of myelinated nerve fibers (1,293 ± 85.49 vs. 817 ± 89.2), an increase in neurofilament high chain (NFH) and myelin basic protein (MBP) immunolabeling and a greater number of fibers within the ideal g-ratio (453.8 ± 45.24 vs. 336.6 ± 37.01). In addition, the inosine group presented a greater adenosine A2 receptor (A2AR) immunolabeling area. This resulted in greater compound muscle action potential amplitude and nerve conduction velocity, leading to preservation of muscle and neuromuscular junction integrity, and consequently, the recovery of motor and sensory function.
Conclusion: Our findings suggest that inosine may enhance regeneration and improve both motor and sensory function recovery after nerve transection when repaired with a poly-lactic acid conduit. This advances the understanding of biomaterials and molecular treatments.
期刊介绍:
Frontiers in Cellular Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the cellular mechanisms underlying cell function in the nervous system across all species. Specialty Chief Editors Egidio D‘Angelo at the University of Pavia and Christian Hansel at the University of Chicago are supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.