Source-oriented health risk assessment of soil potentially toxic elements based on Monte Carlo simulation in the upper reaches of Wei River Basin, China.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Yuqi Zhang, Bing Jiang, Zongjun Gao, Jiutan Liu, Bo Jiang, Jianbin Zhang
{"title":"Source-oriented health risk assessment of soil potentially toxic elements based on Monte Carlo simulation in the upper reaches of Wei River Basin, China.","authors":"Yuqi Zhang, Bing Jiang, Zongjun Gao, Jiutan Liu, Bo Jiang, Jianbin Zhang","doi":"10.1007/s10653-025-02361-8","DOIUrl":null,"url":null,"abstract":"<p><p>The natural environment and public health are gravely threatened by the enrichment of soil potentially toxic elements (PTEs). To explore the contamination level, sources and human health risks posed by PTEs, high-density soil sampling was carried out in the upper Wei River region (UWRR). The results demonstrated that the pollution risk and ecological risk in UWRR as a whole were at a low level, but there were moderate or higher ecological risks of Hg and Cd in some areas. Source analysis of soil PTEs was conducted via absolute principal component score multiple linear regression (APCS-MLR) and positive matrix factorization (PMF) receptor models. APCS-MLR identified three potential sources, while the source division of PMF model was more detailed, which identified four potential sources: mining, coal combustion, machinery manufacturing and agricultural sources, with contribution percentages of 31%, 3%, 37% and 29% respectively. According to the probabilistic human health risk assessment (HHRA), the non-carcinogenic risk for adults was negligible, while that for children cannot be negligible. There were total carcinogenic risks for all populations, but the risk level was acceptable. The total cancer risk for children surpassed 1E-04 by 31.29%, implying a significant carcinogenic risk. Machinery manufacturing was found to be the most significant anthropogenic source of health concerns. This study offers an illustration of probabilistic risk assessment based on sources. The results of the study are favorable to provide new perspectives and scientific reference for soil PTE risk assessment and pollution control.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 2","pages":"52"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02361-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The natural environment and public health are gravely threatened by the enrichment of soil potentially toxic elements (PTEs). To explore the contamination level, sources and human health risks posed by PTEs, high-density soil sampling was carried out in the upper Wei River region (UWRR). The results demonstrated that the pollution risk and ecological risk in UWRR as a whole were at a low level, but there were moderate or higher ecological risks of Hg and Cd in some areas. Source analysis of soil PTEs was conducted via absolute principal component score multiple linear regression (APCS-MLR) and positive matrix factorization (PMF) receptor models. APCS-MLR identified three potential sources, while the source division of PMF model was more detailed, which identified four potential sources: mining, coal combustion, machinery manufacturing and agricultural sources, with contribution percentages of 31%, 3%, 37% and 29% respectively. According to the probabilistic human health risk assessment (HHRA), the non-carcinogenic risk for adults was negligible, while that for children cannot be negligible. There were total carcinogenic risks for all populations, but the risk level was acceptable. The total cancer risk for children surpassed 1E-04 by 31.29%, implying a significant carcinogenic risk. Machinery manufacturing was found to be the most significant anthropogenic source of health concerns. This study offers an illustration of probabilistic risk assessment based on sources. The results of the study are favorable to provide new perspectives and scientific reference for soil PTE risk assessment and pollution control.

基于蒙特卡罗模拟的渭河上游土壤潜在有毒元素源性健康风险评价
土壤潜在有毒元素的富集严重威胁着自然环境和公众健康。为探讨pte的污染程度、来源及对人体健康的危害,在渭河上游地区进行了高密度土壤采样。结果表明:UWRR流域整体污染风险和生态风险均处于较低水平,但部分地区存在Hg和Cd的中度或较高生态风险。采用绝对主成分评分多元线性回归(APCS-MLR)和正矩阵分解(PMF)受体模型对土壤pte进行来源分析。APCS-MLR确定了3个潜在源,PMF模型的源划分更为细致,确定了采矿、燃煤、机械制造和农业4个潜在源,贡献百分比分别为31%、3%、37%和29%。根据概率人类健康风险评估(HHRA),成人的非致癌性风险可以忽略不计,而儿童的非致癌性风险不可忽略。所有人群都有致癌风险,但风险水平是可以接受的。儿童患癌总风险比1E-04高31.29%,具有显著的致癌风险。研究发现,机械制造业是健康问题最重要的人为来源。本研究提供了基于来源的概率风险评估的例证。研究结果有利于为土壤PTE风险评价和污染控制提供新的视角和科学参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信