Review and meta-analysis of gene expression biomarkers predictive of chemical-induced genotoxicity in vivo.

IF 2.3 4区 医学 Q3 ENVIRONMENTAL SCIENCES
J Christopher Corton, Scott S Auerbach, Naoki Koyama, Roman Mezencev, Carole L Yauk, Takayoshi Suzuki
{"title":"Review and meta-analysis of gene expression biomarkers predictive of chemical-induced genotoxicity in vivo.","authors":"J Christopher Corton, Scott S Auerbach, Naoki Koyama, Roman Mezencev, Carole L Yauk, Takayoshi Suzuki","doi":"10.1002/em.22646","DOIUrl":null,"url":null,"abstract":"<p><p>There is growing recognition across broad sectors of the toxicology community that gene expression biomarkers have the potential to identify genotoxic and nongenotoxic carcinogens through a weight-of-evidence approach, providing opportunities to reduce reliance on the 2-year bioassay to identify carcinogens. In August 2022, a workshop within the International Workshops on Genotoxicity Testing (IWGT) was held to critically review current methods to identify genotoxicants using various 'omics profiling methods. Here, we describe the findings of a workshop subgroup focused on the state of the science regarding the use of biomarkers to identify chemicals that act as genotoxicants in vivo. A total of 1341 papers were screened to identify those that were most relevant. While six published biomarkers with characterized accuracy were initially examined, four of the six were not considered further, because they had not been tested for classification accuracy using additional sets of chemicals or other transcript profiling platforms. Two independently derived biomarkers used in conjunction with standard computational techniques can identify genotoxic chemicals in vivo (rat liver or both rat and mouse liver) on different gene expression profiling platforms. The biomarkers have predictive accuracies of ≥92%. These biomarkers have the potential to be used in conjunction with other biomarkers in integrated test strategies using short-term rodent exposures to identify genotoxic and nongenotoxic chemicals that cause cancer.</p>","PeriodicalId":11791,"journal":{"name":"Environmental and Molecular Mutagenesis","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Molecular Mutagenesis","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/em.22646","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

There is growing recognition across broad sectors of the toxicology community that gene expression biomarkers have the potential to identify genotoxic and nongenotoxic carcinogens through a weight-of-evidence approach, providing opportunities to reduce reliance on the 2-year bioassay to identify carcinogens. In August 2022, a workshop within the International Workshops on Genotoxicity Testing (IWGT) was held to critically review current methods to identify genotoxicants using various 'omics profiling methods. Here, we describe the findings of a workshop subgroup focused on the state of the science regarding the use of biomarkers to identify chemicals that act as genotoxicants in vivo. A total of 1341 papers were screened to identify those that were most relevant. While six published biomarkers with characterized accuracy were initially examined, four of the six were not considered further, because they had not been tested for classification accuracy using additional sets of chemicals or other transcript profiling platforms. Two independently derived biomarkers used in conjunction with standard computational techniques can identify genotoxic chemicals in vivo (rat liver or both rat and mouse liver) on different gene expression profiling platforms. The biomarkers have predictive accuracies of ≥92%. These biomarkers have the potential to be used in conjunction with other biomarkers in integrated test strategies using short-term rodent exposures to identify genotoxic and nongenotoxic chemicals that cause cancer.

基因表达生物标志物预测体内化学诱导的遗传毒性的综述和荟萃分析。
毒理学界越来越多的部门认识到,基因表达生物标志物有可能通过证据权重方法识别遗传毒性和非遗传毒性致癌物,从而提供了减少对2年生物测定来识别致癌物的依赖的机会。2022年8月,国际遗传毒性测试研讨会(IWGT)举行了一次研讨会,以严格审查目前使用各种“组学分析”方法识别基因毒物的方法。在这里,我们描述了一个研讨会小组的研究结果,该小组专注于使用生物标志物识别体内作为基因毒物的化学物质的科学状况。共筛选了1341篇论文,以确定最相关的论文。虽然最初检查了六种已发表的具有特征准确性的生物标志物,但其中四种没有被进一步考虑,因为它们没有使用其他化学物质或其他转录物分析平台进行分类准确性测试。结合标准计算技术使用的两种独立衍生的生物标志物可以在不同的基因表达谱平台上识别体内(大鼠肝脏或大鼠和小鼠肝脏)的遗传毒性化学物质。生物标志物的预测准确率≥92%。这些生物标记物有可能与其他生物标记物联合使用,在综合测试策略中使用短期啮齿动物暴露来识别导致癌症的遗传毒性和非遗传毒性化学物质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
10.70%
发文量
52
审稿时长
12-24 weeks
期刊介绍: Environmental and Molecular Mutagenesis publishes original research manuscripts, reviews and commentaries on topics related to six general areas, with an emphasis on subject matter most suited for the readership of EMM as outlined below. The journal is intended for investigators in fields such as molecular biology, biochemistry, microbiology, genetics and epigenetics, genomics and epigenomics, cancer research, neurobiology, heritable mutation, radiation biology, toxicology, and molecular & environmental epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信