Khadija Ei Galai, Wenna Dai, Cheng Qian, Jing Ye, Qin Zhang, Mengdie Gao, Xinyu Yang, Yanbin Li
{"title":"Isolation of an endophytic yeast for improving the antibacterial activity of water chestnut Jiaosu: Focus on variation of microbial communities.","authors":"Khadija Ei Galai, Wenna Dai, Cheng Qian, Jing Ye, Qin Zhang, Mengdie Gao, Xinyu Yang, Yanbin Li","doi":"10.1016/j.enzmictec.2025.110584","DOIUrl":null,"url":null,"abstract":"<p><p>Recent years have seen an increase in the development of functional Jiaosu products, including eco-friendly Jiaosu and antimicrobial healthcare fermentation products. As a result, research on the antibacterial activity of Jiaosu has attracted attention. In the present study, the endophytic yeast WCF016, which exhibits antibacterial activity against Escherichia coli and Staphylococcus aureus, was isolated from the peel of water chestnut and identified as Candida sake via morphological and phylogenetic analyses based on 26S rDNA D1/D2 region sequencing. Water chestnut Jiaosu with or without WCF016 inoculation exhibited similar flavor and physicochemical properties. However, inoculation significantly enhanced the antibacterial activity of water chestnut Jiaosu, especially in group D (inoculate of both fruit and vegetable enzyme starter and WCF016), which showed the largest diameter in its inhibition zone for both E. coli and S. aureus, reaching 25 ± 0 mm and 24 ± 1.0 mm. Moreover, inoculation with WCF016 influenced the abundance of the microbial community, especially Lactiplantibacillus and Zygoascus, which reached 51.76 % and 24.46 %, respectively, in group B (inoculated WCF016), thereby improving the antibacterial activity and flavor quality of the water chestnut Jiaosu. Notably, final pH, total sugar, and all organic acids effectively promoted fungal diversity and exhibited a positive correlation with most of the fungal genera. These results indicate that conditions conducive to the formation of organic acid-producing microbes and the synthesis of organic acids promote the antibacterial activity of Jiaosu.</p>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"184 ","pages":"110584"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.enzmictec.2025.110584","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent years have seen an increase in the development of functional Jiaosu products, including eco-friendly Jiaosu and antimicrobial healthcare fermentation products. As a result, research on the antibacterial activity of Jiaosu has attracted attention. In the present study, the endophytic yeast WCF016, which exhibits antibacterial activity against Escherichia coli and Staphylococcus aureus, was isolated from the peel of water chestnut and identified as Candida sake via morphological and phylogenetic analyses based on 26S rDNA D1/D2 region sequencing. Water chestnut Jiaosu with or without WCF016 inoculation exhibited similar flavor and physicochemical properties. However, inoculation significantly enhanced the antibacterial activity of water chestnut Jiaosu, especially in group D (inoculate of both fruit and vegetable enzyme starter and WCF016), which showed the largest diameter in its inhibition zone for both E. coli and S. aureus, reaching 25 ± 0 mm and 24 ± 1.0 mm. Moreover, inoculation with WCF016 influenced the abundance of the microbial community, especially Lactiplantibacillus and Zygoascus, which reached 51.76 % and 24.46 %, respectively, in group B (inoculated WCF016), thereby improving the antibacterial activity and flavor quality of the water chestnut Jiaosu. Notably, final pH, total sugar, and all organic acids effectively promoted fungal diversity and exhibited a positive correlation with most of the fungal genera. These results indicate that conditions conducive to the formation of organic acid-producing microbes and the synthesis of organic acids promote the antibacterial activity of Jiaosu.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.