Morphine-Induced Elevation of Reactive Oxygen Species Attenuates Chemotherapy Efficacy in Diverse Cancer Cell Types.

IF 2.2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Gong Chen, Si Zeng, Bin Wang, Daguo Wang, Jie Ding, Tao Feng
{"title":"Morphine-Induced Elevation of Reactive Oxygen Species Attenuates Chemotherapy Efficacy in Diverse Cancer Cell Types.","authors":"Gong Chen, Si Zeng, Bin Wang, Daguo Wang, Jie Ding, Tao Feng","doi":"10.2174/0115665240314564241129044548","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Morphine, a mu-opioid receptor (MOR) agonist commonly utilized in clinical settings alongside chemotherapy to manage chronic pain in cancer patients, has exhibited contradictory effects on cancer, displaying specificity toward certain cancer types and doses.</p><p><strong>Objective: </strong>The aim of this study was to conduct a systematic assessment and comparison of the impacts of morphine on three distinct cancer models in a preclinical setting.</p><p><strong>Methods: </strong>Viability and apoptosis assays were conducted on a panel of cancer cell lines following treatment with morphine, chemotherapy drugs alone, or their combination. Oxidative stress levels, along with the activities of superoxide dismutase and catalase, were measured. Rescue studies were also carried out using antioxidant reagents.</p><p><strong>Results: </strong>Morphine induces resistance to conventional chemotherapeutic agents. It was observed that while morphine affected cell viability differently among ovarian cancer, anaplastic thyroid cancer, and oral squamous cell carcinoma, at concentrations that did not directly impact cancer cell viability, it significantly mitigated the inhibitory effects of chemotherapeutic agents across all tested cancer cells. This phenomenon persisted irrespective of the chemotherapeutic agent used, including cisplatin, doxorubicin, and 5-FU. It remained unaffected by adding naloxone, the MOR receptor antagonist, indicating that morphine's mechanism is independent of the μ- opioid receptor. Moreover, it was demonstrated that morphine heightened cellular reactive oxygen species (ROS) levels and suppressed the activities of superoxide dismutase and catalase. Rescue studies revealed that the addition of antioxidant reversed the protective impact of morphine on cancer cells against chemotherapy.</p><p><strong>Conclusion: </strong>These findings hold promise in potentially guiding the clinical application of morphine for cancer patients undergoing chemotherapy.</p>","PeriodicalId":10873,"journal":{"name":"Current molecular medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665240314564241129044548","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Morphine, a mu-opioid receptor (MOR) agonist commonly utilized in clinical settings alongside chemotherapy to manage chronic pain in cancer patients, has exhibited contradictory effects on cancer, displaying specificity toward certain cancer types and doses.

Objective: The aim of this study was to conduct a systematic assessment and comparison of the impacts of morphine on three distinct cancer models in a preclinical setting.

Methods: Viability and apoptosis assays were conducted on a panel of cancer cell lines following treatment with morphine, chemotherapy drugs alone, or their combination. Oxidative stress levels, along with the activities of superoxide dismutase and catalase, were measured. Rescue studies were also carried out using antioxidant reagents.

Results: Morphine induces resistance to conventional chemotherapeutic agents. It was observed that while morphine affected cell viability differently among ovarian cancer, anaplastic thyroid cancer, and oral squamous cell carcinoma, at concentrations that did not directly impact cancer cell viability, it significantly mitigated the inhibitory effects of chemotherapeutic agents across all tested cancer cells. This phenomenon persisted irrespective of the chemotherapeutic agent used, including cisplatin, doxorubicin, and 5-FU. It remained unaffected by adding naloxone, the MOR receptor antagonist, indicating that morphine's mechanism is independent of the μ- opioid receptor. Moreover, it was demonstrated that morphine heightened cellular reactive oxygen species (ROS) levels and suppressed the activities of superoxide dismutase and catalase. Rescue studies revealed that the addition of antioxidant reversed the protective impact of morphine on cancer cells against chemotherapy.

Conclusion: These findings hold promise in potentially guiding the clinical application of morphine for cancer patients undergoing chemotherapy.

吗啡诱导的活性氧升高会降低不同类型癌细胞的化疗效果。
背景:吗啡作为一种多阿片受体(MOR)激动剂,通常与化疗一起用于临床治疗癌症患者的慢性疼痛,但对癌症的影响存在矛盾,对某些癌症类型和剂量具有特异性。目的:本研究的目的是在临床前环境下对吗啡对三种不同癌症模型的影响进行系统评估和比较。方法:对吗啡、化疗药物单独或联合治疗后的一组癌细胞进行活力和凋亡测定。测定了氧化应激水平以及超氧化物歧化酶和过氧化氢酶的活性。还使用抗氧化试剂进行了救援研究。结果:吗啡诱导小鼠对常规化疗药物产生耐药性。我们观察到,虽然吗啡在卵巢癌、间变性甲状腺癌和口腔鳞状细胞癌中对细胞活力的影响不同,但在不直接影响癌细胞活力的浓度下,它显著减轻了化疗药物对所有测试癌细胞的抑制作用。无论使用何种化疗药物,包括顺铂、阿霉素和5-FU,这种现象都持续存在。添加MOR受体拮抗剂纳洛酮对其没有影响,表明吗啡的作用机制独立于μ-阿片受体。此外,吗啡还能提高细胞活性氧(ROS)水平,抑制超氧化物歧化酶和过氧化氢酶的活性。救援研究表明,抗氧化剂的加入逆转了吗啡对癌细胞对抗化疗的保护作用。结论:本研究结果对吗啡在肿瘤化疗患者中的临床应用具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current molecular medicine
Current molecular medicine 医学-医学:研究与实验
CiteScore
5.00
自引率
4.00%
发文量
141
审稿时长
4-8 weeks
期刊介绍: Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews/ mini-reviews, original research articles, short communications/letters and drug clinical trial studies on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal invites guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信