Marta Albanell-Fernández, Montse Rodríguez-Reyes, Carla Bastida, Dolors Soy
{"title":"A Review of Vancomycin, Gentamicin, and Amikacin Population Pharmacokinetic Models in Neonates and Infants.","authors":"Marta Albanell-Fernández, Montse Rodríguez-Reyes, Carla Bastida, Dolors Soy","doi":"10.1007/s40262-024-01459-z","DOIUrl":null,"url":null,"abstract":"<p><p>Population pharmacokinetic (popPK) models are an essential tool when implementing therapeutic drug monitoring (TDM) and to overcome dosing challenges in neonates in clinical practice. Since vancomycin, gentamicin, and amikacin are among the most prescribed antibiotics for the neonatal population, we aimed to characterize the popPK models of these antibiotics and the covariates that may influence the pharmacokinetic parameters in neonates and infants with no previous pathologies. We searched the PubMed, Embase, Web of Science, and Scopus databases and the bibliographies of relevant articles from inception to the beginning of February 2024. The search identified 2064 articles, of which 68 met the inclusion criteria (34 for vancomycin, 21 for gentamicin, 13 for amikacin). A one-compartment popPK model was more frequently used to describe the pharmacokinetics of the three antibiotics (91.2% vancomycin, 76.9% gentamicin, 57.1% amikacin). Pharmacokinetic parameter (mean ± standard deviation) values calculated for a \"typical\" neonate weighing 3 kg were as follows: clearance (CL) 0.34 ± 0.80 L/h for vancomycin, 0.27 ± 0.49 L/h for gentamicin, and 0.19 ± 0.07 L/h for amikacin; volume of distribution (V<sub>d</sub>): 1.75 ± 0.65 L for vancomycin, 1.54 ± 0.53 L for gentamicin, and 1.67 ± 0.27 L for amikacin for one-compartment models. Total body weight, postmenstrual age, and serum creatinine were common predictors (covariates) for describing the variability in CL, whereas only total body weight predominated for V<sub>d</sub>. A single universal popPK model for each of the antibiotics reviewed cannot be implemented in the neonatal population because of the significant variability between them. Body weight, renal function, and postmenstrual age are important predictors of CL in the three antibiotics, and total body weight for V<sub>d</sub>. TDM represents an essential tool in this population, not only to avoid toxicity but to attain the desired pharmacokinetic/pharmacodynamic index. The characteristics of the neonatal population, coupled with the lack of prospective studies and external validation of most models, indicate a need to continue investigating the pharmacokinetics of these antibiotics in neonates.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":" ","pages":"1-25"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762427/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40262-024-01459-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Population pharmacokinetic (popPK) models are an essential tool when implementing therapeutic drug monitoring (TDM) and to overcome dosing challenges in neonates in clinical practice. Since vancomycin, gentamicin, and amikacin are among the most prescribed antibiotics for the neonatal population, we aimed to characterize the popPK models of these antibiotics and the covariates that may influence the pharmacokinetic parameters in neonates and infants with no previous pathologies. We searched the PubMed, Embase, Web of Science, and Scopus databases and the bibliographies of relevant articles from inception to the beginning of February 2024. The search identified 2064 articles, of which 68 met the inclusion criteria (34 for vancomycin, 21 for gentamicin, 13 for amikacin). A one-compartment popPK model was more frequently used to describe the pharmacokinetics of the three antibiotics (91.2% vancomycin, 76.9% gentamicin, 57.1% amikacin). Pharmacokinetic parameter (mean ± standard deviation) values calculated for a "typical" neonate weighing 3 kg were as follows: clearance (CL) 0.34 ± 0.80 L/h for vancomycin, 0.27 ± 0.49 L/h for gentamicin, and 0.19 ± 0.07 L/h for amikacin; volume of distribution (Vd): 1.75 ± 0.65 L for vancomycin, 1.54 ± 0.53 L for gentamicin, and 1.67 ± 0.27 L for amikacin for one-compartment models. Total body weight, postmenstrual age, and serum creatinine were common predictors (covariates) for describing the variability in CL, whereas only total body weight predominated for Vd. A single universal popPK model for each of the antibiotics reviewed cannot be implemented in the neonatal population because of the significant variability between them. Body weight, renal function, and postmenstrual age are important predictors of CL in the three antibiotics, and total body weight for Vd. TDM represents an essential tool in this population, not only to avoid toxicity but to attain the desired pharmacokinetic/pharmacodynamic index. The characteristics of the neonatal population, coupled with the lack of prospective studies and external validation of most models, indicate a need to continue investigating the pharmacokinetics of these antibiotics in neonates.
期刊介绍:
Clinical Pharmacokinetics promotes the continuing development of clinical pharmacokinetics and pharmacodynamics for the improvement of drug therapy, and for furthering postgraduate education in clinical pharmacology and therapeutics.
Pharmacokinetics, the study of drug disposition in the body, is an integral part of drug development and rational use. Knowledge and application of pharmacokinetic principles leads to accelerated drug development, cost effective drug use and a reduced frequency of adverse effects and drug interactions.