Synchronization stability of epileptic brain network with higher-order interactions.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0226291
Zhaohui Li, Chenlong Wang, Mindi Li, Biyun Han, Xi Zhang, Xiaoxia Zhou
{"title":"Synchronization stability of epileptic brain network with higher-order interactions.","authors":"Zhaohui Li, Chenlong Wang, Mindi Li, Biyun Han, Xi Zhang, Xiaoxia Zhou","doi":"10.1063/5.0226291","DOIUrl":null,"url":null,"abstract":"<p><p>Generally, epilepsy is considered as abnormally enhanced neuronal excitability and synchronization. So far, previous studies on the synchronization of epileptic brain networks mainly focused on the synchronization strength, but the synchronization stability has not yet been explored as deserved. In this paper, we propose a novel idea to construct a hypergraph brain network (HGBN) based on phase synchronization. Furthermore, we apply the synchronization stability framework of the nonlinear coupled oscillation dynamic model (generalized Kuramoto model) to investigate the HGBNs of epilepsy patients. Specifically, the synchronization stability of the epileptic brain is quantified by calculating the eigenvalue spectrum of the higher-order Laplacian matrix in HGBN. Results show that synchronization stability decreased slightly in the early stages of seizure but increased significantly prior to seizure termination. This indicates that an emergency self-regulation mechanism of the brain may facilitate the termination of seizures. Moreover, the variation in synchronization stability during epileptic seizures may be induced by the topological changes of epileptogenic zones (EZs) in HGBN. Finally, we verify that the higher-order interactions improve the synchronization stability of HGBN. This study proves the validity of the synchronization stability framework with the nonlinear coupled oscillation dynamical model in HGBN, emphasizing the importance of higher-order interactions and the influence of EZs on the termination of epileptic seizures.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0226291","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Generally, epilepsy is considered as abnormally enhanced neuronal excitability and synchronization. So far, previous studies on the synchronization of epileptic brain networks mainly focused on the synchronization strength, but the synchronization stability has not yet been explored as deserved. In this paper, we propose a novel idea to construct a hypergraph brain network (HGBN) based on phase synchronization. Furthermore, we apply the synchronization stability framework of the nonlinear coupled oscillation dynamic model (generalized Kuramoto model) to investigate the HGBNs of epilepsy patients. Specifically, the synchronization stability of the epileptic brain is quantified by calculating the eigenvalue spectrum of the higher-order Laplacian matrix in HGBN. Results show that synchronization stability decreased slightly in the early stages of seizure but increased significantly prior to seizure termination. This indicates that an emergency self-regulation mechanism of the brain may facilitate the termination of seizures. Moreover, the variation in synchronization stability during epileptic seizures may be induced by the topological changes of epileptogenic zones (EZs) in HGBN. Finally, we verify that the higher-order interactions improve the synchronization stability of HGBN. This study proves the validity of the synchronization stability framework with the nonlinear coupled oscillation dynamical model in HGBN, emphasizing the importance of higher-order interactions and the influence of EZs on the termination of epileptic seizures.

具有高阶相互作用的癫痫脑网络的同步稳定性。
通常,癫痫被认为是神经兴奋性和同步性异常增强。到目前为止,对癫痫脑网络同步的研究主要集中在同步强度上,而同步的稳定性尚未得到应有的探讨。本文提出了一种基于相位同步的超图脑网络(hypergraph brain network, HGBN)构造方法。此外,我们应用非线性耦合振荡动力学模型(广义Kuramoto模型)的同步稳定性框架来研究癫痫患者的hgbn。具体而言,通过计算HGBN中高阶拉普拉斯矩阵的特征值谱来量化癫痫脑的同步稳定性。结果表明,同步稳定性在癫痫发作早期略有下降,但在癫痫发作结束前显著增加。这表明大脑的紧急自我调节机制可能有助于癫痫发作的终止。此外,癫痫发作期间同步稳定性的变化可能是由HGBN中癫痫发生区(EZs)的拓扑变化引起的。最后,我们验证了高阶相互作用提高了HGBN的同步稳定性。本研究用非线性耦合振荡动力学模型验证了同步稳定性框架在HGBN中的有效性,强调了高阶相互作用的重要性以及EZs对癫痫发作终止的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信