Rigorous numerical study of the density of periodic windows for the logistic map.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0250869
Zbigniew Galias
{"title":"Rigorous numerical study of the density of periodic windows for the logistic map.","authors":"Zbigniew Galias","doi":"10.1063/5.0250869","DOIUrl":null,"url":null,"abstract":"<p><p>Numerical study of periodic windows for the logistic map is carried out. Accurate rigorous bounds for periodic windows' end points are computed using interval arithmetic based tools. An efficient method to find the periodic window with the smallest period lying between two other periodic windows is proposed. The method is used to find periodic windows extremely close to selected points in the parameter space and to find a set of periodic windows to minimize the maximum gap between them. The maximum gap reached is 4×10-9. The phenomenon of the existence of regions free from low-period windows is explained.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0250869","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical study of periodic windows for the logistic map is carried out. Accurate rigorous bounds for periodic windows' end points are computed using interval arithmetic based tools. An efficient method to find the periodic window with the smallest period lying between two other periodic windows is proposed. The method is used to find periodic windows extremely close to selected points in the parameter space and to find a set of periodic windows to minimize the maximum gap between them. The maximum gap reached is 4×10-9. The phenomenon of the existence of regions free from low-period windows is explained.

对logistic映射的周期窗密度进行了严格的数值研究。
对logistic映射的周期窗口进行了数值研究。利用区间算法计算了周期窗口端点的精确严格边界。提出了一种求解周期窗的有效方法,该方法的最小周期窗位于两个周期窗之间。该方法在参数空间中寻找与选定点非常接近的周期窗口,并找到一组周期窗口,使它们之间的最大间隙最小。达到的最大差距是4×10-9。解释了无低周期窗口区域的存在现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信