Proportions of incommensurate, resonant, and chaotic orbits for torus maps.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0226617
E Sander, J D Meiss
{"title":"Proportions of incommensurate, resonant, and chaotic orbits for torus maps.","authors":"E Sander, J D Meiss","doi":"10.1063/5.0226617","DOIUrl":null,"url":null,"abstract":"<p><p>This paper focuses on distinguishing classes of dynamical behavior for one- and two-dimensional torus maps, in particular, between orbits that are incommensurate, resonant, periodic, or chaotic. We first consider Arnold's circle map, for which there is a universal power law for the fraction of nonresonant orbits as a function of the amplitude of the nonlinearity. Our methods give a more precise calculation of the coefficients for this power law. For two-dimensional torus maps, we show that there is no such universal law for any of the classes of orbits. However, we find different categories of maps with qualitatively similar behavior. Our results are obtained using three fast and high precision numerical methods: weighted Birkhoff averages, Farey trees, and resonance orders.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0226617","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on distinguishing classes of dynamical behavior for one- and two-dimensional torus maps, in particular, between orbits that are incommensurate, resonant, periodic, or chaotic. We first consider Arnold's circle map, for which there is a universal power law for the fraction of nonresonant orbits as a function of the amplitude of the nonlinearity. Our methods give a more precise calculation of the coefficients for this power law. For two-dimensional torus maps, we show that there is no such universal law for any of the classes of orbits. However, we find different categories of maps with qualitatively similar behavior. Our results are obtained using three fast and high precision numerical methods: weighted Birkhoff averages, Farey trees, and resonance orders.

环面地图中不相称、共振和混沌轨道的比例。
本文的重点是区分一类动力学行为的一维和二维环面映射,特别是,轨道之间的不相称,共振,周期,或混沌。我们首先考虑Arnold的圆映射,对于它,非共振轨道的比例作为非线性振幅的函数有一个普遍的幂律。我们的方法对这个幂律的系数给出了更精确的计算。对于二维环面图,我们证明了对于任何一类轨道都不存在这样的普遍规律。然而,我们发现不同类别的地图具有性质相似的行为。我们的结果使用三种快速和高精度的数值方法:加权Birkhoff平均,Farey树和共振阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信